真空中,电荷q均匀地分布在半径为R的细圆环上,该圆环以匀角速度o绕 几何轴线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:12:42
取半径为r的球面(r<R)为高斯面,由高斯定理E*4πr^2=Q*r^3/R^3/ε0所以E=Qr/4πε0R^3当r》R就是点电荷的电场强度E=Q/4πε0r^2电势=Edr从r到无穷远的积分,球外
ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds
由高斯定理可等效为球心点电荷,因此场强为sigma/4epsilon0,电势为r*sigma/2epsilon0再问:是这个答案再答:没错就是这个
静电感应.球壳内外分别均匀带电-Q,+Q.利用均匀带电球面内部是等电势与叠加原理从而电势:r>r2V=kQ/rr1
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
小孔没有用体积来计算,而是面积.因为电量均匀分布,所以:球壳的电量/小孔的电量=球壳的表面积/小孔的表面积.再问:是我说错了哈小孔的表面积怎么可以用球的表面积算呢?再答:也不是,而是:小孔的面积用圆的
将半圆环无限微元,每一微元电荷量为Q/n,每一微元到环心距离为R由场强公式:E=k(q/(R×R))×cosθθ为该微元与环心连线和垂直直径方向的连线,之后对每一个微元的场强求和既可,需要用到积分公式
λ=Q/(πR)环心处电场强度E方向由半圆弧的中点指向环心E=Ex=∫(0toπ)dExdEx=dEsinθdE=kdq/R^2dEx=kλdθsinθ/R=kQ/(πR^2)sinθdθE=∫(0t
环心处的电场强度E=0将圆环分成很多小的相等的,单元(点电荷)则与圆心对称的两个点电荷的合场强为0,累计E合=0再问:合场强不是0好吗...再答:一定是0,用的是微元法再问:是半圆细环看清楚题啊再答:
这个我想应该是电场强度为零不论是平面圆环的圆心还是球体的圆心圆心上受到的力都抵消掉了比如圆上一点A点对中心O的磁场强度为a那么A穿过圆心交于圆上的B点B点对中心O的磁场强度和A的大小相等,但方向相反故
0把圆环上关于环心对称的Q相互抵消(它们产生的电场大小相等方向向反)等于不存在电场故环心处E=0
用高斯定理做就可以球面的话r小于等于R时场为零,因为球面内部没有电荷分布,而球体的话如果是均匀带电球体内部是有场分布的再问:能告诉下具体怎么求吗?再答:
这个题很简单啊,课本上应有推理过程.运用高斯定理,求解电场强度,然后再用积分求电势即可
球的表面积和圆的面积是不一样的,球表面积是4派R方再问:你的意思是说,分子表示的是圆的面积,分母表示的是球的表面积吗?可是小圆孔不是球体吗?
积分来算,为了把二重的面积分简化为一重积分,首先根据对称性,d处的场强方向是沿着圆心O和d点连线向外.设圆盘的面电荷密度是s,有s=Q/πR^2考虑圆盘上的一个半径是在r,r+dr处的细环带,它的电量
依据静电屏蔽,O点总的场强应该为零,而两个外部电荷产生的场强为(6kQ)/L,方向由A指向B,故感应场强与外部电荷场强大小相等、方向相反,即大小为(6kQ)/L,方向由B指向A.
空间电场呈球对称分布(带电球体内也是),直接应用高斯定理即可.再问:球里的电场是否为零呢再答:不是,因为题目说是均匀带电球体,应当理解为绝缘带电球体,即电荷不能自由移动,所以球内电场并不为零。如果是金
球的表面积和圆的面积是不一样的,球表面积是4派R方