矩阵 子式为0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:03:48
e的A次幂,其实就是对矩阵A中的每一个数进行EXP运算,比如:>>A=[111;222;333]A=111222333>>exp(A)ans=2.71832.71832.71837.38917.389
行列式为0故r(A)一个代数余子式非0,故所在的n-1行线性无关,r(A)≥n-1.即有r(A)=n-1.再问:不是这样,我刚才知道,是利用k阶子式的知识再答:你是说下面这个结论?方阵A的秩=最大的k
要想构成子空间,必须满足两个条件:任取A,B位于E,则A+B位于E,kA位于E.其中E是不可逆矩阵的集合.但可取A=1000B=0001则A+B=1001是可逆阵,不位于E中.上面举的是2阶方阵,一般
因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵
你这表达式首先就是错的……然后:A=Table[{Random[Real,10],Random[Real,10],Random[Real,10],Random[Real,10]},{i,1,10}]b
当然不行比如说diag{1,0,1,0}*diag{0,1,0,1}=0再问:�����������ǶԽǾ����再答:˵���㿴�����ҵļǺ�,��Ӧ��������diag��ʲô��˼dia
非奇异和可逆是一个意思,就是叫法不一样.非奇异子矩阵说的是该子矩阵是非奇异的,即可逆的.一个矩阵的子矩阵就是从矩阵里选出某些行和某些列,把落在这些行和这些列上的元素拿出来形成的新矩阵.
首先PQ为初等阵,根据矩阵秩的性质矩阵A的秩和PAQ的秩相同,所以题目所说PA*Q的秩和A*的秩相同那么A*的秩和A秩是有关系的因为A有一个4阶非0子式,所以A的秩为4或者5根据性质,如果A满秩,那么
1、如楼上所说,高维矩阵是个解决方法,不过和你说的要求略有不一样另外就是用元胞数组,例如A=cell(5,5);A{1,1}=eye(4);这样A是5*5的元胞数组,其中第一行第一列为4*4的单位阵,
不一样的.A=0表示矩阵只有一个元素,而且是0.但是|A|=0,A不一定只有一个元素,可以有很多元素.例如:下面的矩阵≠0,但是矩阵行列式=01000010000100000
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
矩阵是系数的集合或者说是同一个体的不同属性的集合再问:举个例子?再答:线性方程组中,系数就成了矩阵,解就成了向量.AX=B矩阵的物理意义_百度文库http://wenku.baidu.com/view
看看这个图片证明很简单,把矩阵与那个逆阵相乘等于单位矩阵就OK了^-^至于怎么得到的这个结论,要一长段的说教呢记住它会用就行了哈
因为A^2=0所以r(A)+r(A)
课本上有定理证明.其实只要理解了规律,这个定理会很容易记住的.对秩的理解也会加深,对线代整个体系的掌握也会提升.
这是2阶子式矩阵的秩是其最高阶非零子式的阶你这例子最高阶非零子式是|A|,所以r(A)=3
这里是用到了矩阵秩的不等式R(BA)≤min{R(B),R(A)}即BA的秩小于等于A和B中秩较小的一个那么显然在这里A的秩一定小于等于3,所以当然可以得到R(BA)≤3,不管B的秩是多少
m->n维的变换矩阵是nxm的矩阵(x1,x2.xm)->(y1,y2...yn)二维->二维的一个变换矩阵把向量(x1,x2)->(y1,y2)变换矩阵是2x2的设矩阵为a11a12a21a22会把
矩阵的元素为二维向量即为二维矩阵(1,2),(2,3)(1,3),(2,5)这就是一个二阶二维矩阵