矩阵(AB)T等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:23:34
证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解所以r(B)
有很多方法说明这个问题,这里告诉你其中一个先知道三个事实第一初等变换不改变矩阵的秩第二初等行(列)变换,相当于左(右)乘一个可逆阵.第三一个秩为r,可以只通过行(列)变换变成主对角线上只有r个1,其它
设A=(a1,a2,.an)^T,B=(b1,b2,.bn)^T则AB^T=a1b1a1b2a1b3.a1bna2b1a2b2a2b3.a2bn..anb1anb2anb3.anbn注意任何一个2*2
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
A^TB=-12-13(A^TB)^-1=-32-11
AB的秩永远小于等于A的秩和B的秩两者的最小值
当A为列满秩的时候一定成立!行满秩就不一定
假设A可逆,由AB=0左乘A逆得B=0不符题意A不可逆则A的行列式为0|A|=7t+21=0t=-3
A*(E(单位矩阵)+B)=EA*A逆=E所以A逆=E+B这样的题不用写具体数的,只要化成A*A逆的形式就行~
detA·detB=det(AB)=det(E)=1所以det(A)≠0所以A可逆A·B=E设B'·A=E则B'=B'·E=B'·(A·B)=(B'·A)·B=E·B=B所以AB=BA=E所以A的逆矩
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
因为AB=0所以B的列向量都是Ax=0的解又因为B不为0所以Ax=0有非零解所以|A|=0所以r(A)
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
告诉你这几个结论吧,老师说这个记住就好:rank(AB)
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
a=[12;34]b=[45;67]>>a*bans=16193643>>b*aans=19282740显然是不相同的.