矩阵A,B为三阶非零矩阵,切AB等于零则常数a满足条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:22:41
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
|B|≠0故B可逆故ABB^-1=0*B^-1故A=0
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
经济数学团队帮你解答,有不清楚请追问.请及时评价.
正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
voidmain(){intA[N][M]={0};intB[N][M]={0};intC[N][M]={0};inti,j;for(i=0;i再问:不好意思,我是要用到NEW和DELETE和指针的。
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)
矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'(A+B)a>0;所以A+B也是
srcstream.free;开始速度设置:__");仿照for(j=0;j
eadLength=fread(mess,sizeof(char),M,fp);tdb'Process32First',0因为icostream,dststream:tmemorystream;if(
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A
可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因
参考一下
设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵
A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|