矩阵A-E怎么求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:13:28
矩阵A-E怎么求
逆矩阵的特征值就是原矩阵特征值的倒数,不知道行列式E+2A怎么来求?是不是跟特征值有关啊?

关于逆矩阵的特征值,你说的是对的.E+2A的特征值是1+2*A的特征值行列式等于特征值的乘积再问:也就是说,E+2A的特征值是3,-3,-5,对吧?所以,行列式E+2A的值等于3*(-3)*(-5)=

设三阶矩阵A,A-E和E+2A均不可逆,求A的特征值

由特征值的定义:|A-sE|=0的s为特征值不可逆等价于行列式等于0而|A-0E|=0,|A-1E|=0,|A-(-0.5)E|=0所以特征值为0,1,-0.5

矩阵 逆矩阵 AA*=A*A=|A|E |A|是行列式,怎么乘一个矩阵 单位矩阵E

|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|

矩阵 AB+E=A^2+B 求 B= ,

AB+E=A^2+BSO:AB-B=A^2-ESO:(A-E)B=(A-E)(A+E)但是你没说A=E?所以假如A=E很多解假如|A-E|不等于0那么B=A+E

A-E A+2E 2A-E为奇异矩阵 求|A+3E|

知识点:1.设f(x)是x的多项式.若a是A的特征值,则f(a)是f(A)的特征值2.A的行列式等于A的全部特征值之积.由A-EA+2E2A-E为奇异矩阵所以|A-E|=0,|A+2E|=0,|2A-

数学 矩阵矩阵A满足A的平方等于2E,求(A+E)的逆?

逆矩阵是A-E,可以利用条件改写得出.经济数学团队帮你解答.请及时评价.

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

已知A*,且ABA∧-1=BA^-1+3E,E为四阶单位矩阵,求矩阵B.(原本告诉了A*我没打出,只是问下B怎么推出.

ABA∧-1=BA^-1+3E,右乘A:AB=B+3A(A-E)B=3A,B=3[(A-E)^-1]AA*→|A*|=|A|³,A*=|A|[A^-1]→[A^-1]→A→B

A为3阶矩阵,|A-E|=|A-2E|=|A-3E|=0,求|A*-E|

因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,

矩阵A-B怎么求

A中的元素减去与之对应的B中的每个元素即可

e的矩阵次方:就是eA,A是e的指数且A是矩阵怎么算

矩阵函数有许多定义方式(当然互相都是等价的):比如若当标准型定义、差值多项式定义、柯西积分公式定义、幂级数定义.e^A=I+A+A^2/2!+A^3/3!+...(幂级数定义)积分应该是指e^At积分

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

问一道线性代数题抽象矩阵的逆矩阵A^2+A-E=0求(A-E)^(-1)=?怎么算

A^2+A-E=0可凑为:A^2+A-2E=-E分解(A-E)(A+2E)=-E由逆矩阵的性质AB=BA=E则A,B互为逆矩阵所以(A-E)^(-1)=-(A+2E)诸如此类题目都是这么凑!

线性代数 告诉你A和B 求矩阵方程AX+2E=B+X 要怎么求

(A-E)X=(B-2E)X=(B-2E)(A-E)^-1其中A^(-1)表示矩阵A的逆矩阵

已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量

已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量矩阵A有一个特征值为λ,说明|λE-A|=0于是|(λ+1)E-(E+A)|=0即λ+1为E+A的一个特征值.于是解线性方程:(E+A)ξ=(λ+

这几道矩阵题怎么解1.设A为m×n实矩阵,若ATA=0,则A=02.设A= ( -11 4 ),求(A+E)(E-A+A

A的转置乘以A那么,所得矩阵对角线上是A中的元素平方和相加,因为矩阵是零矩阵,所以每个元素必须为零,你可以用个2*2的矩阵试下.首先知道,A^2=E,按照将矩阵A和E看成数,可用公式知,原式=A^7-

矩阵A≠单位阵E,那么A-E的行列式等不等零?怎么证明

可能等于0,也可能不等于0.举两个例子不就行了,例如设A=2E,则A-E=E,其行列式不为0;取A为这样的矩阵,就是把E的左上角的1改为0,其它都不变,则只要A不是一阶的行列式,A-E的行列式必为0.