矩阵A-E怎么求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:13:28
关于逆矩阵的特征值,你说的是对的.E+2A的特征值是1+2*A的特征值行列式等于特征值的乘积再问:也就是说,E+2A的特征值是3,-3,-5,对吧?所以,行列式E+2A的值等于3*(-3)*(-5)=
由特征值的定义:|A-sE|=0的s为特征值不可逆等价于行列式等于0而|A-0E|=0,|A-1E|=0,|A-(-0.5)E|=0所以特征值为0,1,-0.5
|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|
AB+E=A^2+BSO:AB-B=A^2-ESO:(A-E)B=(A-E)(A+E)但是你没说A=E?所以假如A=E很多解假如|A-E|不等于0那么B=A+E
知识点:1.设f(x)是x的多项式.若a是A的特征值,则f(a)是f(A)的特征值2.A的行列式等于A的全部特征值之积.由A-EA+2E2A-E为奇异矩阵所以|A-E|=0,|A+2E|=0,|2A-
逆矩阵是A-E,可以利用条件改写得出.经济数学团队帮你解答.请及时评价.
(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!
用初等行变换化为(E,A^-1)
(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-
ABA∧-1=BA^-1+3E,右乘A:AB=B+3A(A-E)B=3A,B=3[(A-E)^-1]AA*→|A*|=|A|³,A*=|A|[A^-1]→[A^-1]→A→B
因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,
A中的元素减去与之对应的B中的每个元素即可
矩阵函数有许多定义方式(当然互相都是等价的):比如若当标准型定义、差值多项式定义、柯西积分公式定义、幂级数定义.e^A=I+A+A^2/2!+A^3/3!+...(幂级数定义)积分应该是指e^At积分
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A^2+A-E=0可凑为:A^2+A-2E=-E分解(A-E)(A+2E)=-E由逆矩阵的性质AB=BA=E则A,B互为逆矩阵所以(A-E)^(-1)=-(A+2E)诸如此类题目都是这么凑!
(A-E)X=(B-2E)X=(B-2E)(A-E)^-1其中A^(-1)表示矩阵A的逆矩阵
已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量矩阵A有一个特征值为λ,说明|λE-A|=0于是|(λ+1)E-(E+A)|=0即λ+1为E+A的一个特征值.于是解线性方程:(E+A)ξ=(λ+
A的转置乘以A那么,所得矩阵对角线上是A中的元素平方和相加,因为矩阵是零矩阵,所以每个元素必须为零,你可以用个2*2的矩阵试下.首先知道,A^2=E,按照将矩阵A和E看成数,可用公式知,原式=A^7-
可能等于0,也可能不等于0.举两个例子不就行了,例如设A=2E,则A-E=E,其行列式不为0;取A为这样的矩阵,就是把E的左上角的1改为0,其它都不变,则只要A不是一阶的行列式,A-E的行列式必为0.