矩阵AB=0 AB的秩之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:16:52
矩阵AB=0 AB的秩之和
[线性代数] 矩阵AB=0 证明秩之和小于等于n

证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解所以r(B)

两个矩阵相乘的秩练习题:设AB都是n阶非零矩阵,且AB=0,则AB的秩?答案是都小于n解题过程中说因为AB=0,故秩(A

定理:如果AB=0,则秩(A)+秩(B)≤n.证明:将矩阵B的列向量记为Bi.∵AB=0,所∴ABi=0,∴Bi为Ax=0的解.∵Ax=0的基础解系含有n-秩(A)个线性无关的解,∴秩(B)≤n-秩(

矩阵中AB=BA的条件

矩阵满足AB=BA,就称A,b是可交换的.除了特殊的几个结论外(如,A^2与A可交换),没有什么一般的条件.

矩阵AB=0,则矩阵A,矩阵B的关系

显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0

(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23

线性代数矩阵秩:r(AB)

(AB)>=r(A)+r(B)-n=>rA|A|=0

已知矩阵A和矩阵AB秩相等[r(A)=r(AB)],证明矩阵A和矩阵AB的值域相等(R(A)=R(AB)).

由于秩相等,所以值域维数相等.又由于值域有包含关系,所以值域就一样了.再问:我知道A的值域一定包含AB的值域,请问如何证AB的值域包含A的值域?再答:由于秩相等啊,这样值域的维数都等于秩。包含关系+维

矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1

BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从

线性代数中,设AB均为n阶非零矩阵,且AB=0,则A和B的秩 都小于零 答案上说由题可知

AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]

线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(

我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条

为什么矩阵A可逆,则矩阵AB的秩等于矩阵B的秩,同样,矩阵B可逆,则矩阵AB的秩等于矩阵A的秩?

A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

已经矩阵A=1 0/2 1,求,满足AB=BA的所有矩阵

设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca

矩阵AB=0 ,行列式AB=0

不是矩阵和行列式是两个概念行列式是值和代数式矩阵是数量关系表再问:为什么矩阵AB=0,可以推出A的行列式=0或者B的行列式=0再答:不对吧A=-11B=11AB=0但不可以推出A的行列式=0或者B的行

线性代数问题若非零矩阵A为4*3矩阵,AB=0,其中矩阵B=1 5 ,则A的秩等于多少?2 73 9B矩阵没有打好,是一

首先,AB的运算结果仍是一个矩阵,矩阵=0的情况,只有矩阵中每一个元素均为0才会整个矩阵为0.其次,AB=0可以推导出AB'=0(其中B'为B矩阵经过一定初等变换而成),因为初等变换均可以表示为有限个