矩阵ab=ba的条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:14:45
据我所知AB=BA并没有什么本质不同的充要条件.当然,有一个必要条件是A和B在(其代数闭包内)可以同时相似上三角化.楼上的讲法显然是错误的,比如取A是单位阵,B是非退化Jordan块.再问:555我刚
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
矩阵满足AB=BA,就称A,b是可交换的.除了特殊的几个结论外(如,A^2与A可交换),没有什么一般的条件.
首先A和B都必须是方阵,不然AB和BA是不型的矩阵不能做减法.因此设A,B均为n阶方阵.然后因为tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(I)=ntr(A)表示矩阵A的迹故AB-BA
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
AB=E如果A(或B,实际上只要有一个另一个一定是)是方阵的化,那么A,B都可逆互为对方的逆.另外可逆很多充要条件.行列式不等于0AB=BA=E方阵时AB=E满秩方阵可以经过初等变换得到单位矩阵等等.
题目不完全,首先应有A和B均为n阶对称矩阵的条件.1、若A、B是对称矩阵,则根据对称矩阵的定义,(AB)T=AB,(T是上标,以下相同),而根据转置矩阵的重要性质,(AB)T=(B)T(A)T,而B、
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
设A=﹙aij﹚B=﹙bij﹚tr﹙AB﹚=∑[1≤i≤n]∑[1≤j≤n]aij×bjitr﹙BA﹚=∑[1≤i≤n]∑[1≤j≤n]bij×aji[把字母i,j对换]=∑[1≤j≤n]∑[1≤i≤
只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
B似乎是A得一个广义逆这么简单得矩阵,你设B=a,b,c,d带入算就可以了B=abcdAB=a+cb+dcdBA=aa+bcc+dAB=BA可以得到a=a+c==>c=0b=b+d==>d=0d=c+
若AB是对称矩阵,则AB=(AB)^T=B^TA^T=BA若AB=BA,则AB=BA=B^TA^T=(AB)^T故AB是对称的.BA同理可得
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.
设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B
有公式|AB|=|A||B|这里|A|和|B|都是数了,所以可以用数的乘法交换率|A||B|=|B||A|=|BA|所以相等