矩阵A不等于E且满足A^2=A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:52:30
矩阵A不等于E且满足A^2=A
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A

A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵

证明:因为A^2-2A-4E=0所以有(A+E)(A-3E)=E所以A+E与A-3E都可逆,且互为逆矩阵.

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.

证明:因为A^2=A所以(E-2A)(E-2A)=E-4A+4A^2=E-4A+4A=E.所以E-2A可逆,且(E-2A)^-1=E-2A.

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1

因为A^3-6E=0所以A(A^2-2A+4E)+2A^2-4A-6E=0所以A(A^2-2A+4E)+2(A^2-2A+4E)-14E=0所以(A+2E)(A^2-2A+4E)=14E所以B=A^2

A是4阶矩阵,且满足AA^T=2E,|A|

由AA^T=2E得|A|^2=2^4由|A|

已知A是n阶方阵,且满足(A-E)^2=2(A+E),E是n阶单位矩阵,则A^-1=?

(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(

设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0

AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0

27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.

要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

α的转置乘以β不等于0 设矩阵A=α乘以β的转置-E,且满足方程A^2-3A=4E,则α的转置乘以β等于多少

因为α^Tβ≠0所以αβ^T不是零矩阵由A^2-3A=4E得(A+E)(A-4E)=0所以αβ^T(αβ^T-5E)=0所以αβ^Tαβ^T-5αβ^T=0所以(β^Tα-5)αβ^T=0所以α^Tβ

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因