矩阵a乘以矩阵b的秩为2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:53:26
是错的.关键的是A*B*未必是对称的.即(A*B*)^T未必等于A*B*.注意:正定矩阵首先是对称矩阵.
显然可以,令A、B均为零矩阵即可.
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
:所求的B的行列式=1×(-2)×3=-6.
这是一个基础题呀.好好学习一下呀.B={1,0,2;0,1,0;0,0,1}*A
有.若P,Q可逆,则r(A)=r(PA)=r(AQ)=r(PAQ)
voidmain(){intA[N][M]={0};intB[N][M]={0};intC[N][M]={0};inti,j;for(i=0;i再问:不好意思,我是要用到NEW和DELETE和指针的。
高中数学还号大学数学已经都忘光了看来要专业人士解决了!自卑了
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
若B为n阶Hermite正定矩阵,则存在n阶矩阵A且A为下三角矩阵,使得B等于A乘以A的共轭转置.放在实数域内就是A乘以A的转置矩阵了,其实这就是所谓矩阵的Cholesky分解.
不等于,AXB矩阵相乘满足A的行数与B的列数相等,反过来不一定成立,即BXA可能根本无法做乘法
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因
是这样的,矩阵乘法要前面一个矩阵的列数等于后面一个矩阵的行数才能乘法运算的
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'