矩阵A的6次方和矩阵A的平方的3次方一样吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:24:38
矩阵A的6次方和矩阵A的平方的3次方一样吗
请教一个矩阵的题,已知三阶非零矩阵,A的平方等于0,求其特征值和Jordan标准型.

A^2=0但A非零,所以A的极小多项式是x^2,所有的特征值都是03阶幂零阵的Jordan型只有三种情况1.三个1阶块2.一个1阶块和一个2阶块3.一个3阶块显然第2种是唯一满足条件的(逐一分析即可)

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

求矩阵A和它增广矩阵的秩,

你自己题目抄错了

设A是2阶非零矩阵,A的平方等于O矩阵,求A的秩

R(A)=1.A为非零矩阵.所以R(A)>0.若R(A)=2则detA不为零det(A*A)=det(A)det(A).命题得证!

A矩阵的K次方的逆等于A的逆矩阵的K次方嘛

等于.由性质(AB)^-1=B^-1A^-1知(A^4)^-1=A^-1A^-1A^-1A^-1=(A^-1)^4再问:请问老师我这个计算过程对吗?照此计算,A的逆是不是相当于把B的逆的第二行的-1倍

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

矩阵A的n次方求法?矩阵A 为对称矩阵,A的n次方该怎么求?

先把A相似成一个对角矩阵.这样A的n次方就可以变到对对角矩阵作用了

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

矩阵A*的意义

伴随矩阵A的伴随矩阵可按如下步骤定义:1.把A的每个元素都换成它的代数余子式;(代数余子式定义:在一个n级行列式D中,把元素第i行第j列元素aij(i,j=1,2,.n)所在的行与列划去后,剩下的(n

矩阵A的合同矩阵是什么

有非常多其中一个就是它本身定义:若B=C'AC,C可逆,则可以说明A,B矩阵是合同矩阵,C'比表示C转置

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

已知矩阵A的逆矩阵A

因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321.  …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-

矩阵证明若AB=BA 则·(AB)的n次方=A的n次方*B的n次方 AB均为平方矩阵

这个很简单就是考定义(AB)的n次方=AB·AB·AB········AB(共乘以n次)∵AB=BA∴(AB)的n次方=ABABAB········AB=A·A·A·A······B·B·B·B·B·

矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-