矩阵中秩的数等于列数线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:53:26
一个n(级)阶矩阵A的行(或列)向量组线性无关,则A的秩为?A的秩:r(A)=n一个n阶矩阵A的行(或列)向量组线性无关,则有A的行列式|A|≠0,A为满秩矩阵,A的秩为n.
对,矩阵秩的值等于列向量线性无关的个数,也等于行向量线性无关的个数,还等于非零子行列式的最大阶数.
由n个线性无关向量作为列组成的矩阵秩为n最简单易懂的来讲,就是:矩阵的秩=矩阵的线性无关的向量的个数这里线性无关的向量有n个,那么组成的矩阵的秩肯定是n希望对你有帮助,望采纳,谢谢~
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
提供两种证法如图,第二种方法要用到秩的性质.经济数学团队帮你解答,请及时采纳.
对,你说的就是满秩矩阵的定义
设系数矩阵A=(a1,a2,...,an)则增广矩阵(A,b)=(a1,a2,...,an,b)再设ai1,...,air是A的列向量组a1,a2,...,an的一个极大无关组.由已知r(A)=r(A
有误!3行4列必定线性相关
|A-λE|=-λ0111-λx10-λ=(1-λ)((-λ)^2-1)=-(λ-1)^2(λ+1)所以A的特征值为1,1,-1.A是否能对角化,取决于重根特征值1是否有2个线性无关的特征向量即是否有
如果是方阵,就一定可逆.如果不是方阵,就永远不可逆.
A转置矩阵秩等于=列数=3
用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设
因为如果A可逆,则Ax=0有唯一解0,xA=0也有唯一解0,而这恰好是列向量组和行向量组线性无关的定义
第一题:3第二题:y1^1+y2^2-y3^2第三题:-1第四题:10
用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设
这个刚答了再问:刚刚是在网页上问的不知道怎么看回复呀,现在是在APP上,能不能麻烦你把答案粘贴一下过来呢谢谢再答:"矩阵的秩小于行数的时候,其对应的行向量组是线性相关,矩阵的秩小于列数的时候其对应的列
A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关
没有一点对的地方比如200011001线性无关特征向量的数=2不同特征值的个数加上重根的重数=2+2=4矩阵的秩=3再问:你不懂我的意思,不同特征值的个数加上重根的重数是指不同的个数,里面有重根的算重
完全可以.因为矩阵的秩与它的行秩,还有列秩,三者是相等的.
楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.