矩阵中秩的数等于列数线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:53:26
矩阵中秩的数等于列数线性无关
一个n级矩阵A的行(或列)向量组线性无关,则A的秩为?>

一个n(级)阶矩阵A的行(或列)向量组线性无关,则A的秩为?A的秩:r(A)=n一个n阶矩阵A的行(或列)向量组线性无关,则有A的行列式|A|≠0,A为满秩矩阵,A的秩为n.

线性代数,矩阵秩的值等于列向量线性无关的个数吗?

对,矩阵秩的值等于列向量线性无关的个数,也等于行向量线性无关的个数,还等于非零子行列式的最大阶数.

由n个线性无关向量作为列组成的矩阵秩为n…秩和线性无关什么关系?高手点播…

由n个线性无关向量作为列组成的矩阵秩为n最简单易懂的来讲,就是:矩阵的秩=矩阵的线性无关的向量的个数这里线性无关的向量有n个,那么组成的矩阵的秩肯定是n希望对你有帮助,望采纳,谢谢~

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

证明矩阵列向量组线性无关

提供两种证法如图,第二种方法要用到秩的性质.经济数学团队帮你解答,请及时采纳.

为什么增广矩阵的秩等于系数矩阵的秩,所以后者的极大线性无关组是前者的极大线性无关组?

设系数矩阵A=(a1,a2,...,an)则增广矩阵(A,b)=(a1,a2,...,an,b)再设ai1,...,air是A的列向量组a1,a2,...,an的一个极大无关组.由已知r(A)=r(A

矩阵对角化,有3个线性无关的特征向量,那么这个矩阵的阶数怎么求

|A-λE|=-λ0111-λx10-λ=(1-λ)((-λ)^2-1)=-(λ-1)^2(λ+1)所以A的特征值为1,1,-1.A是否能对角化,取决于重根特征值1是否有2个线性无关的特征向量即是否有

已知矩阵的列向量组线性无关,能否得出此矩阵可逆?

如果是方阵,就一定可逆.如果不是方阵,就永远不可逆.

证明n维矩阵存在n个线性无关列向量,则矩阵满秩`

用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设

为什么矩阵可逆,它的行向量组就线性无关,列向量组也线性无关?

因为如果A可逆,则Ax=0有唯一解0,xA=0也有唯一解0,而这恰好是列向量组和行向量组线性无关的定义

A是4乘以3的矩阵,A的列向量组线性无关,求A的秩

第一题:3第二题:y1^1+y2^2-y3^2第三题:-1第四题:10

证明n维矩阵存在n个线性无关列向量,则矩阵满秩

用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设

”矩阵的秩小于行数的时候,其对应的行向量组是线性相关,矩阵的秩小于列数的时候其对应的列向量组是线性相关的”这句话对吗?对

这个刚答了再问:刚刚是在网页上问的不知道怎么看回复呀,现在是在APP上,能不能麻烦你把答案粘贴一下过来呢谢谢再答:"矩阵的秩小于行数的时候,其对应的行向量组是线性相关,矩阵的秩小于列数的时候其对应的列

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

想确认一个问题,线性无关特征向量的数=不同特征值的个数加上重根的重数=矩阵的秩对吗?

没有一点对的地方比如200011001线性无关特征向量的数=2不同特征值的个数加上重根的重数=2+2=4矩阵的秩=3再问:你不懂我的意思,不同特征值的个数加上重根的重数是指不同的个数,里面有重根的算重

对于列阶梯形矩阵能不能说它的秩等于非零列的列数?

完全可以.因为矩阵的秩与它的行秩,还有列秩,三者是相等的.

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.