矩阵为零矩阵,它的伴随矩阵也为零矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:41:08
行列式为0的矩阵的伴随矩阵不一定是零矩阵,只有矩阵的秩小于n-1再问:矩阵的秩小于N-1是伴随矩阵就是零矩阵了么?再答:嗯,这个很简单理解的,因为矩阵秩小于n-1,那么它所有的n-1阶行列式都为0,而
正交矩阵.当然,仅仅是指方阵而言.正交矩阵的特点:行列式的绝对值是1,行和列都是与矩阵阶数相同维数的向量空间的标准正交基,作为线性变换不改变长度和内积,等等.
直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了
|B|≠0故B可逆故ABB^-1=0*B^-1故A=0
因为A为正交阵所以A^T=A^-1于是A^*=det(A)*A^-1=det(A)*A^T所以(A^*)^-1=[1/det(A)]*(A^T)^-1=[1/det(A)]*(A^-1)^T=[(1/
相等.由AA*=|A|E知(A*)^-1=(1/|A|)A.由A^-1(A^-1)*=|A^-1|E知(A^-1)*=|A^-1|A=(1/|A|)A所以(A*)^-1=(A^-1)*
若|A|=0假设|A*|不等于0则A*可逆即(A*)^-1乘以A*=E则A=AA*(A*)^-1=|A|(A*)^-1=0即A为0矩阵它的伴随矩阵也是0矩阵这与|A*|不等于0矛盾得证
经济数学团队帮你解答,有不清楚请追问.请及时评价.
设A是N阶可逆矩阵,A*=|A|A-1,所以A**=(|A|A-1)*=|A|N-1A/|A|=|A|N-2A也就是A的行列式的N-2次方倍的A
(1)当A,B都可逆时(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|A^-1)=B*A*.当A,B不可逆时,令A(x)=A+xE,B(x)=B+xE当x充
对的.设二次型f(X1,···),若对于任意的n维非零向量X,有f(X1,···,Xn)=X^TAX>0,则称该二次型和矩阵是正定的.有正定矩阵A,则A的n个特征值均大于0.而|A|等于各个特征值的乘
请看图片
非零矩阵是有元素不为零的矩阵
肯定非零啊再问:再问一下哈,如果A为n阶方阵,R[A]<n-1,为什么有A*=0啊?再问:喔!想通了了〜还是谢了哈
当r(A)=n时,r(A*)=n.当r(A)=n-1时,r(A*)=1.当r(A)
可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
就是正规矩阵吧PS.单位矩阵是N*N的规格,而且1是呈对角线.肯定不是这个.
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.