矩阵乘以它的转置等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:15:45
你好!αβT是3阶方阵,而βT*α才=3希望我的回答能帮助到你.再问:����ô�ж�ʲô����Ƿ���ʲô�������ֵ��再答:n����ָ����n��n�еľ�����ֵ��1��1�е
注意:一个矩阵与它的转置矩阵相等,这样的矩阵叫对称矩阵.一个矩阵的逆矩阵等于它本身,这样的矩阵是单位阵,或称幺阵,记作I,也有资料记作E.
数学公式这里不好写,所以就用图片了.
⑴AB的转置等于B的转置乘以A的转置A为m行n列矩阵,i行j列交点处元素记﹙A﹚ijB为n行k列矩阵.﹙AB﹚'rs=﹙AB﹚sr=∑[1≤i≤n]﹙A﹚si﹙B﹚Ir﹙B'A'﹚rs=∑[1≤i≤n
一般来讲不相等简单的例子A=0100
详细证明请见下图
设α为n维列向量,且α'α=1,矩阵A=E-αα',证明行列式|A|=0.证明:A^2=(E-αα')(E-αα')=E-2αα'+αα'αα'=E-αα'=A所以A(A-E)=0因为A-E=-αα'
A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,
等于,因为他的逆也是对称矩阵注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)因为A是对称的,故(A^-1)^T=A^(-1)得证.
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
若B为n阶Hermite正定矩阵,则存在n阶矩阵A且A为下三角矩阵,使得B等于A乘以A的共轭转置.放在实数域内就是A乘以A的转置矩阵了,其实这就是所谓矩阵的Cholesky分解.
这是正交矩阵的定义.该矩阵每列元素做成向量,都是单位向量,且列向量组之间是正交的,因此列向量组是一个正交单位向理组.同样的,行向量组也是正交单位向量组.矩阵的行列式只能是1或-1.其逆矩阵就是它的转置
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
1、因为已知L矩阵,所以很容易可以求出L的转置矩阵;2、又因为Z的转置和L的转置相乘是单位矩阵,即是说Z的转置和L的转置互为逆矩阵,所以通过初等变换的方法可以求得L转置的逆矩阵,此矩阵便是Z的转置;3
设A是m×n的矩阵.可以通过证明Ax=0和A'Ax=0两个n元齐次方程同解证得rank(A'A)=rank(A)首先Ax=0肯定是A'Ax=0的解.其次A'Ax=0x'A'Ax=0(Ax)'Ax=0A
|AA^T|=|A||A^T|=|A||A|=|A|^2
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行