矩阵分析 (aij aji) 2对角线元素相加除以二的变换之后是什么矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:29:36
..,n的一个值有对角元的绝对值与其它非对角元的绝对值的行和相等之外,其余都是对角元的绝对值严格大于号其它非对角元的绝对值的行和,则A是非奇异矩阵.
实对称矩阵一定能相似对角化(就是与对角阵相似)普通矩阵不一定能相似对角化A与B合同定义:A=P'*B*P;A与B相似的定义:A=inv(P)*B*P;【inv是求逆操作】所以当P是酉矩阵的话(P*P'
是!因为IxE-AI=(x-1)(x-2)(x-3).令IxE-AI=0,解得所有特征值是1,2,3.第一个例子也同理.所以对角矩阵的特征值就是主对角线上的各个元素.再问:谢谢老师,那矩阵相似,他们的
手写也是这么写,不明白为什么电脑写的你就看不懂
除主对角线元,其余元都是0的方阵称为对角矩阵.
准对角矩阵是分块矩阵概念下的一种矩阵.就是你把对角矩阵对角线上的元素改成一块快小方阵~~~额.我不会打差不多就是从左上到右下一系列的方块构成
diag函数用来通过对角线元素构造矩阵,例如A=diag([1234])A=1000020000300004
(1)设B=tE-A则特征方程为:|B|=|t-11-3||0t-40|=t^3-6*t^2+32|-3-1t-1|解之得特征根为:t=-2,t=4,t=4∴能与一个对角矩阵相似(2)令t=-2,则B
对角矩阵(diagonalmatrix)是一个主对角线之外的元素皆为0的矩阵.对角线上的元素可以为0或其他值.1、设M=(αij)为n阶方阵.M的两个下标相等的所有元素都叫做M的对角元素,而序列(αi
可以的,对角矩阵不唯一.也就是说标准型不唯一.
准对角矩阵是分块矩阵概念下的一种矩阵.就是你把对角矩阵对角线上的元素改成一块快小方阵~额.差不多就是从左上到右下一系列的方块构成
如果A的每个对角元的绝对值都比所在行的非对角元的绝对值的和要大,即|a_ii|>sum{j!=i}|a_ij|对所有的i成立,那么称A是(行)严格对角占优阵.如果A'是行严格对角占优阵,那么称A是列严
Aij是矩阵A(aij)中元素aij的代数余子式,矩阵A*(Aij)成为A的伴随矩阵,d=|A|,A的矩阵=d分之一×A*书上是这么说的,但是伴随矩阵很难求,平时做题不这么求逆矩阵的而是做n×2n矩阵
|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,
对角阵的第k个对角元对应的特征向量是单位阵的第k列酉阵的奇异值是1
定理5.3,因为其实最小多项式就是等于第N个不变因子(易证),第N个不变因子若没有重根,则说明其特征多项式是一次因式的乘积,所以是可以对角化的
|λ-20-1||-3λ-1-3|=﹙λ-1﹚²﹙λ-6﹚|-40λ-5|λ=1时|-10-1||-30-3||-40-4|的秩=1相应的齐次方程组有两个线性无关的解,即λ=1有两个线性无关
定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。
这一般不是通过“验证”的方法做的,你按照施密特正交化法得到的就是正交的了,不需要验算再问:它基础解系里有的是正交向量组有的不是正交向量组啊是正交向量组的也用施密特法?已经正交化了的再正交化一遍?再答:
如下图,经济数学团队为你解答,有不清楚请追问.满意的话,请及时评价.谢谢!