矩阵和的秩小于矩阵秩的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:22:53
考察相抵变换A00B=>A0AB=>AAAA+B右下角子阵的秩当然不超过整个矩阵的秩,从而r(A+B)
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
1.设该矩阵为M,n行n列.由于该矩阵的元素性质,他的左上角的n-1行n-1列的子矩阵是严格对角占优的(即对角元的绝对值大于该行其他元的绝对值的和,严格对角占优的矩阵非退化),从而M的秩>=n-1.但
相等.矩阵的最根本理念是多个方程式,所谓秩就是把方程组化成最简单的形式后,能一眼看出有哪几个方程是多余的,剩下的不多余的式子的个数就是秩.比如4xy=38x2y=63xy=2多余一个式子,秩为2,行秩
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
A小于n-1伴随矩阵为0等于n-11等于n为n
你自己题目抄错了
对于n阶方阵A来讲,R(A)=n等价于|A|≠0.就是这样.
1任何一个矩阵都可以划为行阶梯矩阵,而行阶梯矩阵的秩等于非零行的行数,那是不是就说任何一个矩阵的秩都是行数减一?应该是行数减去0行行数.2行阶梯矩阵零行的数可以是大于等于二的?零行行数是可以≥2的.
硬背当然不好想了.可以这样从意义上来形象地理首先秩可以理解为线性无关的列向量的组数.那么矩阵A、B的秩分别a、b,那么就是分别有a、b个线性无关的列向量了.而线性相关的就是由向量加减后是否平行决定的.
(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆
|A|E的秩是n|A|E的秩肯定不超过A的秩!当|A|≠0时,|A|E的秩是n,此时A可逆,所以R(|A|E)=R(A).当|A|=0时,|A|E=0,秩是0,R(|A|E)≤R(A).
可逆矩阵A的秩就是它的阶,它的逆矩阵也是可逆矩阵﹙其逆就是A﹚,秩也是阶,与A的阶一样.∴可逆矩阵A的秩和他的逆矩阵的秩一样.是它们共同的阶.
增广矩阵=1-4-13740-4174-157-1682-8-175793-12-3111120r2+4r1,r3-2r1,r4-3r11-4-13740010-9-80011-100000r1+4r
首先奇异和病态没有必然的联系,良态、病态、条件数都要针对求解的问题而言,比如说矩阵求逆的性态和矩阵求特征值的性态就完全是两码事在2-范数扰动的意义下,矩阵求逆或者解线性方程组的时候奇异矩阵可以认为是最
设A是m×n的矩阵.可以通过证明Ax=0和A'Ax=0两个n元齐次方程同解证得rank(A'A)=rank(A)首先Ax=0肯定是A'Ax=0的解.其次A'Ax=0x'A'Ax=0(Ax)'Ax=0A
要使用一个重要结论:AB=0,A是的列数=B的行数n,则r(A)+r(B)≤n.这个应该是书上的例题,以同济版线性代数为例.AA*=0,所以r(A)+r(A*)≤n,所以r(A*)≤n-(n-1)=1