矩阵的秩等于列秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:31:51
这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.向量组的
大哥,你这是行最简式,并不是列最简式...
对,矩阵秩的值等于列向量线性无关的个数,也等于行向量线性无关的个数,还等于非零子行列式的最大阶数.
都是大姨妈的回答,看你大表叔我的~首先为了帮助你明白,你先要弄清楚2个定义:矩阵的秩的定义:存在K阶子式不为0,对任意K+1阶子式均为0,则k即为矩阵的秩.向量组的秩的定义:向量组的极大线性无关组所包
设A为n*n矩阵,rank(A)=1记A=(a1,…,an),ak,k=1,…,n为n维列向量不妨设a1不是零向量,那么由rank(A)=1可得ak=bk*a1,bk为数于是A=(a1,b2*a1,…
这个矩阵的秩为2.列秩也为2-21/5x2+24/5x3=6-21/5x7+24/5x8=9矩阵的秩的定义:存在K阶子式不为0,对任意K+1阶子式均为0,则k即为矩阵的秩.向量组的秩的定义:向量组的极
你没明白秩的定义,秩的定义是最高阶非零子式,必是方阵,肯定行秩等于列秩再问:能否说得详细一些?我是初学者反应比较慢再答:换句话来说,如果按照定义求一个矩阵的秩,假设这个矩阵是Amn,无论m,n谁大谁小
性质:|A|≠0r(A)=n因为Dr≠0所以Dr(不是值,看作一个子矩阵)的列向量组线性无关而线性无关的向量组添加若干个分量仍线性无关所以在A中Dr所在的r列也线性无关.
初等列变换就是右乘初等矩阵,一个矩阵乘上一个可逆矩阵秩不变
行秩=列秩=2.后两行是前两行的线性组合(3,7)=-(1,5)+2(2,6)(4,8)=-2(1,5)+3(2,6)
初等列变换不改变向量组的线性相关性
证你的头麻烦采纳,谢谢!
1、M=N则矩阵的行秩等于列秩2、M
我懂你意思,你是想说为什么阶梯矩阵最简形式,看起来行秩多于列秩或者相反,其实当你转置矩阵然后化简,你会发现原来阶梯矩阵中看起来多的行秩或者列秩,总会被化简到和矩阵的秩一样,不信可以试试
A转置矩阵秩等于=列数=3
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
可以的哦.行变换相当于作成一个可逆矩阵,列变换是等价于右乘一个可逆矩阵他们的秩都不变的.
按照秩的性质有r(AB)
完全可以.因为矩阵的秩与它的行秩,还有列秩,三者是相等的.
矩阵A的列向量组可以由矩阵B的列向量组表示时一定存在C有A=BC,(你把每个表达式写出来,组合一下就可以得到这个式子)R(A)=R(AB)