矩阵相似 背景

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:44:45
矩阵相似 背景
等价矩阵就是相似矩阵吗

是的矩阵相似的充分必要条件是有n个线性无关的特征向量既然等价那一定有n个线性无关的特征向量所以相似但反过来不成立

矩阵等价,矩阵相似,矩阵合同的区别与联系

等价一般是指可以通过初等变换变成另一个,本质上只需要两个矩阵秩相同就可以了.是个很宽泛的条件,应用不大.A相似于B,是存在非异矩阵P,使得PAP^-1=B,这个是线性代数或者高等代数里面最重要的关系,

矩阵:等价、相似、合同

不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:

任何矩阵都有相似矩阵吗?

哈哈,上面的算什么回答阿可以明确地告诉你,任何矩阵都是有相似矩阵的,而且还都相似于一类特殊的矩阵.上面两位说的是一个定义,另外还有一个定义就是一个矩阵经过一系列初等变换后得到新的矩阵与原矩阵相似.所以

线性代数:相似矩阵的问题

相似的好处很多,最大的好处是通过相似可以让任何一个矩阵变为若当标准型.若当标准型是尽可能最简单的一种矩阵,这中矩阵在运算上有许多方便之处.相似矩阵间有很多相同的性质,比如秩,行列式,迹(对角线之和),

关于相似矩阵的特征向量

相似的矩阵必有相同的特征值,但不一定有相同的特征向量.如果A相似B,则存在非奇异矩阵是P,有P^(-1)*A*P=B.det(xI-B)=det(xI-P^(-1)*A*P)=det(P^(-1))=

矩阵A与B相似,

相似矩阵有相同的迹和行列式所以有tr(A)=22+x=1+4=tr(B)得x=-17再计算行列式|A|=22*(-17)-31y=-374-31y|B|=4-6=-2所以-374-31y=-2得y=-

相似矩阵和合同矩阵是不是对角矩阵

实对称矩阵一定能相似对角化(就是与对角阵相似)普通矩阵不一定能相似对角化A与B合同定义:A=P'*B*P;A与B相似的定义:A=inv(P)*B*P;【inv是求逆操作】所以当P是酉矩阵的话(P*P'

相似矩阵没有相似的特征向量?

直观来说,相似的两个矩阵是同一个线性变换在不同基底下的矩阵.用矩阵算出来的“特征向量”实际上是线性变换的特征向量在该基底下的坐标.同一个线性变换的特征向量是确定的,但该向量在不同基底下的坐标一般来说是

线性代数,证明两个矩阵相似

左边那个矩阵叫A,右边那个矩阵叫B.只需证明|λE-A|=|λE-B|即可.显然|λE-B|= λ^(n-1)*(λ-n),下面我们求|λE-A|.如图(点击可放大):

两个矩阵相似必定合同?

显然不成立比如1203和1003相似但不合同

矩阵,相似,特征多项式

A,B均与对角矩阵相似,且有相同的特征多项式,则他们相似于相同的对角矩阵,根据矩阵相似的传递性就得A相似B.

两矩阵相似,求其矩阵中的未知数

显然-1是B的一个特征值,再由A~B得到-1也是A的一个特征值.

等价矩阵相似么?相似矩阵等价么?

等价矩阵相似,相似矩阵不一定等价.

矩阵相似求z 急

那这个矩阵应该如何表示?a=[b;zeros(1,b.rowNum)]很久没用matlab,差不多是这样的,你如果知道点的话,改写下

怎么判断矩阵相似? 

A和B都是实对称矩阵,把特征值算出来就行了这里A和B相似且合同

矩阵与对角矩阵相似的充要条件

定理5.3,因为其实最小多项式就是等于第N个不变因子(易证),第N个不变因子若没有重根,则说明其特征多项式是一次因式的乘积,所以是可以对角化的

矩阵的相似合同

利用特征值与秩经济数学团队帮你解答.

证明矩阵相似 

1.BA=A^{-1}(AB)A2.A=PBP^{-1}=>A^{-1}=PB^{-1}P^{-1}=>A^*=PB^*P^{-1}

矩阵,相似,极小多项式

由于是对称矩阵可对角化,因此问题转化为:两个实对角阵A,B的极小多项式相同,那么二者是否相似(事实上如果相似,那么二者是相同的,即是否有A=B)?这个结论显然不真,例如取A=diag{1,1,2},B