矩阵积的行列式等于矩阵行列式之积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:07:23
就是在其本身两旁边把[]换成||符号就可以了,就可以用行列式的运算法则了哦.行列式最后的得数是一个数,矩阵是一个类似于数表的阵.两者的关系要分清楚.希望我的回答有帮助哦~
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
矩阵相乘,结果是矩阵.他们的行列式相乘,结果是一个数.显然不能比较,不能说相等不相等.但是,矩阵相乘的行列式,等于矩阵行列式相乘.比如,矩阵A、B存在以下等式:|AB|=|A||B|
|α1α2α3β1+β2|=|α1α2α3β1|+|α1α2α3β2|--行列式性质:若某行(列)是两个数的和,则行列式等于两个行列式的和=|A|+|B|
矩阵是式子,行列式是数字
3阶行列式用对角线法则,参:实线为正,虚线为负a11a12a13a21a22a23a31a32a33=a11a22a33+a21a23a31+a13a21a32-a13a22a31-a12a21a33
A*(AT)=E两边取行列式,由于A与AT行列式相等,则|A|^2=1注:AT是A的转置
A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det
因为PP^(-1)=E所以|P||P^(-1)|=|E|=1所以|P^(-1)|=1/|P|
不等吧是倒数再问:1.A为三阶方阵,|A-1|=2,则|2A|=?2.如果|A|=2,则|AA*|=?再答:1.曾经会过...2.AA*=|A|E|AA*|=|2E|=8再问:第一题是|A|的逆矩阵的
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
显然都是对的,因为|X^T|=|X|你应该把A^T-B^T看成(A-B)^T
|λE-A|=|λ-a11-a12...-a1n||-a21λ-a22.-a2n||.||-an1-an2.λ-ann|=(λ-λ1)(λ-λ2)...(λ-λn)λ^n-(a11+a22+...+a
将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对
ABCD=|A||D-CA^-1B|其中A为可逆方阵当A可逆时,第1行乘-CA^-1加到第2行得AB0D-CA^-1B注(1):若AC=CA,则上式=|AD-CB|注(2):若A不可逆,且AC=CA,
给你看看建议你先看看书哈
你先把行列式的基本性质复习复习,都掌握之后就能看懂了最关键的性质就是把行列式某一行的若干倍加到另一行上整个行列式的值不变
行列式是一个数值,矩阵是一个数表行列式可看作一个n行n列矩阵(即方阵)的行列式矩阵的行数与列数不一定相同n阶方阵A的行列式有性质:|A|=|A^T||kA|=k^n|A||AB|=|A||B|若A可逆
定理5.2设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式吗这个是不成立的
行列式是一个数值,矩阵是一个数表行列式可看作一个n行n列矩阵(即方阵)的行列式矩阵的行数与列数不一定相同n阶方阵A的行列式有性质:|A|=|A^T||kA|=k^n|A||AB|=|A||B|若A可逆