kmo分析可以做因子分析为什么只出来一个因素
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:47:40
你完全不懂因子分析吧,不存在共线性是不能做因子分析的,kmo大小无所谓的,79%已经很大了再问:是不太懂。不是说KMO要70%以上才算合格吗?再答:只要这个检验p
这需要看你问卷的具体问题,如果你问卷中包含若干量表,则需要对每一个量表进行效度分析(KMO和巴特利检验及因子分析),如果你整张问卷就是一张普通的调查问卷的话,对问卷进行整体的效度分析就可以了.
你把变量弄少一点就可以了.
根据学者的相关研究,做因子分析样本容量最好不小于100人,题目与被试比例最好是1:5,最起码样本量不可以小于指标数量(以上内容请参考吴明隆统计实务),否则因子分析难以得到稳定可靠的结果,虽然操作还是可
KMO值是由你的数据算出来的,不是所有的数据都适合做主成分分析.只有KMO值只有0.5说明你的数据样本不适合做主成分分析,下面做的一切都是不合理的.KMO值不能提高,除非你换一组数据.
不可以的如果要尊重事实的话,你数据出来就是这样的结果,为什么要拒绝这样的结果呢?
仅作主成分分析是不用看KMO值的,提取主成分中解释方差较大的变量,构建新的指标体系,然后在试图用因子分析,另外注意,主成分分析一般不用来赋权!
是的,这是因子分析的前提条件,通不过这两个东西就说明量表不适合做因子分析再问:可是我看了好多论文上面在做因子分析时都没有做相关检验的,还是在核心期刊上,我把那些数据检验一下救过都是显示Thismatr
做个相关或者偏相关分析看看,把那些与其中任何一个变量相关性都很弱的变量剔除出去,再试下
一般来说,因子分析所形成的因子都是自变量,因为因子分析所得到的因子地位是相同的,不应该做因子间的因果关系分析,而应该做这些因子对其他变量的影响或被其他变量所影响.假设因子分析所得到的因子为a1a2……
是说这个矩阵不是正定的,我知道你可能还是不明白,我帮你查了很多资料,正定矩阵意思是说数据特征的特征值不是都大于0的,因此我推测你数据中可能存在问题,有负的特征值,怎么改数据,我还不清楚,我还得学习学习
按照它的解释,至少需要两组数据做因子分析,而你指输入了一组变量数据,这样是没法做分析的,或者你所输入的当前变量不能够被计算,程序也找不到新的数据.我想最起码,你需要重新输入两组可进行计算的变量数据,要
如果不相关,就没有必要用因子分析,因子分析只在高度相关时才能使用.正确的选择方法才是关键.再问:写论文题目早就定下来了,没法改了,而且我找了好几份参考的论文,也都是用因子分析法分析跟我一样的问题的,我
效度分为很多,你说的应该是结构效度因子分析有标准步骤,不是说你这么做因子分析就不好,他那么做因子分析就好需要对哪些变量做因子分析,要根据你的目的来决定kmo是必须要看的我经常帮别人做这类的数据分析
KMO值检验的作用是看看你的这些题目的内部相关,存不存在一定量的局部因子,那么,如果内部相关太低,那KMO值就不高,你这里我不知道是只放了两个项目还是怎么回事,如果只有两个项目,那KMO不高太正常了,
输入的话按列输入即可看到你的数据才知道是不是能做因子分析你的很多描述都不清楚,没法判断我替别人做这类的数据分析蛮多的再问:这是我的问卷,发出去后才发现很多问题,http://www.sojump.co
不适合,一般kmo大于0.7
主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.因子分析是研究如何以
可以解释但是一般使用主成分与因变量y进行回归分析的比较多通过这种回归分析可以更加清晰的看出之间的关系
你看下没出来这个结果的英文提示是什么,这个一般是你的数据有问题的