秩A等于秩A^2,证明秩A^k等于秩A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:40:48
因为AE=EA,即A与E可交换所以由二项式公式有(A+E)^k=∑(0
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
因为A^2=A所以A(A-E)=0所以0=R(A(A-E))≥R(A)+R(A-E)-n故R(A)+R(A-E)≤n又R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n所以
因为(AB)^(-1)=B^(-1)A^(-1)所以(A^2)^(-1)=(AA)^(-1)=A^(-1)A^(-1)=(A^(-1))^2
只需说明A存在一个k阶子式不为零即可.事实上本题选取前k阶顺序主子式即可.显然这是一个严格对角占优的矩阵,行列式非零再问:可不可以这么认为,行列式不为零,然后该n阶方阵可逆,此时方阵的秩为n再答:我说
A^2=A->A(A-E)=0所以r[A(A-E)]≥r(A)+r(A-E)-nr(A)+r(A-E)≥r(A-A+E)所以r(A)+r(A-E)=n也可以用分块矩阵做
即证:(E-A)(E+A+A^2...+A^(k-1))=E左式展开=E*(E+A+A^2...+A^(k-1))-A*(E+A+A^2...+A^(k-1))=E-A^k当A^k=0时,左式=E
请参考这个证明:http://zhidao.baidu.com/question/228513959.html
(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-
知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.
这个不一定.根据你给的条件只能说明A的若当型中都是形如的若当块,并且最大的若当块是k阶的,也就是说A的秩最小是k-1多少不一定.
由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立
根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆
设Ax=0左乘A^T(就是A的转置)得到(A^T)Ax=0就是说Ax=0的解一定是(A^T)Ax=0的解同理对方程(A^T)Ax=0左乘x^T得到(Ax)^T(Ax)=0因为Ax是个列向量,(Ax)^
设A是m×n的矩阵.可以通过证明Ax=0和A'Ax=0两个n元齐次方程同解证得r(A'A)=r(A)1、Ax=0肯定是A'Ax=0的解,好理解.2、A'Ax=0→x'A'Ax=0→(Ax)'Ax=0→
只需证明(E-A)[E+A+A^2+.+A^(k-1)]=E,由于矩阵和单位矩阵E的乘法有可交换性,即AE=EA=A,因此乘法公式a^k-b^k=(a-b)[a^(n-1)+a^(n-2)b...+b
(1)构造的Br+1中j表示矩阵的任意一列,可以是1
(E-A)(E+A+A^2+……+A^k-1)=E-A^k=E所以,(E-A)^-1=E+A+A^2+……+A^k(-1)再问:nwng能不能多写点呀详细一下谢谢虽然我看懂了;老师不让写这么少再答:这
这一句话就证明了:因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0其实有一个结论:对于一个n阶方阵.