秩为K的矩阵的线性无关的解的个数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:01:10
秩为K的矩阵的线性无关的解的个数
一个n级矩阵A的行(或列)向量组线性无关,则A的秩为?>

一个n(级)阶矩阵A的行(或列)向量组线性无关,则A的秩为?A的秩:r(A)=n一个n阶矩阵A的行(或列)向量组线性无关,则有A的行列式|A|≠0,A为满秩矩阵,A的秩为n.

线代:证明截短后线性无关则原来的也线性无关,证明过程有一句说因为是子矩阵,所以原矩阵的秩同子矩阵

比如说有n个列向量,将这n个列向量截短后组成的向量仍然线性无关,那么我们假设原来的n个向量组成的矩阵为A,截短后组成的矩阵为B.则由于B为A的一部分,故r(A)>=r(B)其次r(A)又必然再问:这个

请问:实对称矩阵K重特征根必定有K个线性无关特征向量(解)的结论如何证明?

这种基本结论都不会证很不应该先取A的一个单位特征向量x,以x为第一列生成一个酉阵U,那么U^HAU是分块对角Hermite阵,归纳即得Hermite矩阵的谱分解对于实对称矩阵,因为特征向量可以取成实的

假设s×n矩阵A的秩为r.证明Ax=θ的任意n-r个线性无关的解都是其基础解析.

首先有结论:Ax=0的基础解系含n-r个解向量.证明:设a1,...,an-r是Ax=0的任意n-r个线性无关的解要证a1,...,an-r是Ax=0的基础解系,只需证Ax=0的任一解向量b都可由a1

非齐次线性方程组有三个线性无关的解,系数矩阵的秩为什么为2

题目条件不足!3个线性无关的解设为a1,a2,a3则a1-a2,a1-a3是Ax=0的线性无关的解所以n-r(A)>=2所以r(A)再问:题目中给了一个四元方程组,让证明矩阵系数的秩为2再答:由上面知

由n个线性无关向量作为列组成的矩阵秩为n…秩和线性无关什么关系?高手点播…

由n个线性无关向量作为列组成的矩阵秩为n最简单易懂的来讲,就是:矩阵的秩=矩阵的线性无关的向量的个数这里线性无关的向量有n个,那么组成的矩阵的秩肯定是n希望对你有帮助,望采纳,谢谢~

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

在证明是否可以矩阵对角化过程中,利用定理n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量

定理:n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量k重特征值有k个线性无关的特征向量而对k重特征值λ,属于特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解所以属于特征值λ的线性

为什么增广矩阵的秩等于系数矩阵的秩,所以后者的极大线性无关组是前者的极大线性无关组?

设系数矩阵A=(a1,a2,...,an)则增广矩阵(A,b)=(a1,a2,...,an,b)再设ai1,...,air是A的列向量组a1,a2,...,an的一个极大无关组.由已知r(A)=r(A

如何用矩阵的秩判断向量组是否线性相关还是线性无关

秩等于行向量或列向量个数时,线性无关,小于则相关.

若λ为A的k重特征值如果A是n阶矩阵 k是A的m重特征值 则属于k的线性无关的特征向量的个数不超过m个.其中 k是A的m

重特征值的意思就是特征多项式的重根.举个例子,有一个三阶矩阵A,400031013它的特征值多项式为(4-λ)(λ²-6λ+8)=(2-λ)(4-λ)²其中λ=4是2重根,我们就说

线性代数问题n阶矩阵A 有k个线性无关的特征向量 则Ax=0的基础解系有k个向量吗?为什么?

这是两个无关的结论若|A|不等于0,则AX=0无非零解(只有零解)相关结论:1.A的属于不同特征值的特征向量是线性无关的2.A的属于特征值λ的特征向量是(A-λE)X=0的非零解

若5远线性方程组AX=b的基础解系中含有2个线性无关的解向量,则系数矩阵A的秩为多少

等于2,你看一看解方程组的过程,实际上就是对系数矩阵进行初等变换,而初等变换的结果求出来的就是秩

n阶矩阵A能不能有n 1个线性无关的特征向量?

n阶矩阵A最多有n个线性无关的特征向量,因为n阶矩阵的特征向量必然也是n维的,而n维空间的向量也最多只有n个是线性无关的.

线性代数问题 一个矩阵若可对角化 那么 它的一个特征值若为k重特征根 则对应k个线性无关的特征向量

是的,而且在所有不同的特征值的所有线性无关的特征向量可以作为线性空间的一个基,这个基下矩阵可化为对角阵

一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩

设三阶方阵A的三重特征根为c首先看这唯一的特征值c是不是01如果c是0那么Ax=cx=0那么由于矩阵只有2个线性无关的特征向量,即解空间的维数等于2那么rkA=n-dim解空间=3-2=12如果c非0

可逆矩阵的构成的向量组线性无关?

可逆矩阵的行列式不为零,所以其向量组是线性无关的.假如矩阵的向量组线性相关,则其行列式为零.

若n阶矩阵A有n个属于特征值1的线性无关的向量,怎么证此时A为n阶单位矩阵.

把n个线性无关的特征向量拼成一个可逆阵P=[x1,x2,...,xn],那么AP=P=>A=I再问:лл�����Ѿ�������ˣ�һʱ��Ϳ���ܼ

凡行向量组线性无关的矩阵必为可逆矩阵,为什么不对?

可逆矩阵是对方阵而言的比如2*3矩阵A,即使r(A)=2,也不能说A可逆

A为m×n阶矩阵,B为n×k阶矩阵,c=AB为m×k阶矩阵,若r(A)=n,r(B)=k,证明:c的列向量线性无关

证明:设α为k维列向量,是CX=0的解,即有Cα=0.则ABα=0.(*)因为r(A)=n所以AX=0只有零解.由(*)知Bα=0.(**)又因为r(B)=k所以BX=0只有零解.由(**)知α=0.