积分1 (a^2-x^2)^3dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:56:59
换元x=asinu,dx=acosudu∫(a^2-x^2)^(-3/2)dx=∫(acosu)^(-3)acosudu=1/a^2∫(secu)^2du=tanu/a^2+C因为sinu=x/a,c
不太看得懂你的问题,你应该想问积分上限函数吧(变限积分)?运用原函数存在定理即可,d/dt∫[x^2→0](sint/t^2)+1dt=[d/dt∫[u→0](sint/t^2)+1dt]*(x^2)
题目有问题,f(x)这个函数是什么表达式或者有什么条件?我估计你这个题目是判断被积函数的奇偶性之后化简在积分.再问:晕了打多了个f(x)再答:x^3是奇函数;sin^2(x)是偶函数;x^4+2x^2
∫[0,√3a]1/(a^2+x^2)=∫[0,√3a]1/a^2(1+(x/a)^2)=1/a^2*∫[0,√3a]1/(1+(x/a)^2)=1/a^2*arctanx/a|[0,√3a]=1/a
→y=1+√x→原函数:Y=X+2X^(3/2)/3进行解答即可
F(x)=S1/(x^2)dx=Sx^(-2)dx=1/(1-2)*x^(1-2)+c=-x^(-1)+c=-1/x+c在(a,b)上的定积分=F(b)-F(a)=1/a-1/
∫√(1+x^2)dx=x*√(1+x^2)-∫x^2/√(1+x^2)dx=x*√(1+x^2)-∫(x^2+1)/√(1+x^2)dx+∫1/√(1+x^2)dx=x*√(1+x^2)-∫√(1+
1、=2x(1+x^4)^(1/2)2、=d/dx(x^1/2)*∫(0~x^2)cost^2dt=(1/2)x^(-1/2)*∫(0~x^2)cost^2dt+(x^(1/2))*cos(x^4)*
设x=-t,dx=-dt∫(-a→a)ƒ(x)dx=∫(a→-a)ƒ(-t)(-dt)=∫(-a→a)ƒ(-x)dx∫√(1-x)/[x√(1+x)]dx=∫1/x
∫(1->3)dx/(x-2)=[ln|x-2|](1->3)=ln1-ln1=0
如果是从b到a的话,分子就是一个数,导数当然为0
这个很麻烦...设x=asinydx=acosydy原式=积分(1/(a^2*cos^2y))^(5/2)acosydy=1/a^4*积分(secy)^4dy=1/a^4积分(1+(tany)^2)d
A:原式=-cos+∞+cos0发散B:原式=-1/2e^(-∞)+1/2e^0=1/2收敛C:原式=ln+∞-ln1发散D:原式=2√+∞-2√1发散所以答案为B
再问:好吧我脑子一时短路。。。。sinh^(-1)是什么。。。这个对吗再答:对的。。。我倒是犯了错,少除了个2arcsinh(x)是双曲正弦的反函数。sinhx=(e^x-e(-x))/2coshx=
1.∫(x+1)/(x²+2x+5)dx因为d(x²+2x+5)=(2x+2)dx=2(x+1)dx=1/2∫1/(x²+2x+5)d(x²+2x+5)因为∫1
解∫1/(1-x)²dx=-∫1/(1-x)²d(1-x)=-∫1/u²du=-(-1/u)+C=1/u+C=1/(1-x)+C