积分10的arccosx方 根号下1-x的平方dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:51:00
y'=-2x*(arccosx)+(1-x^2)*(-1/√(1-x^2))=-2x*(arccosx)-(1-x^2)/√(1-x^2))=-2x*(arccosx)-√(1-x^2)
方法一:方法二:再问:太感谢了,真详细╮(╯▽╰)╭
设t=arccosx,则y=t+10t,0<t≤π.求导得,y′=1-10t2=t2−10t2<0,∴y在定义域0<t≤π.上是减函数,当t=π时,y取得最小值π+10π故答案为:π+10π
令x=cost则原式=∫(π/2→π/4)t/sin^3(t)*(-sint)dt=∫(π/4→π/2)t/sin^2(t)dt=-∫(π/4→π/2)td(cott)=-tcott|(π/4→π/2
设10的X次方等于√210^X=√2lg10^X=lg(√2)X=(lg2)/2≈0.3010/2=0.1505验算:10^(0.1505)≈1.4142≈√2
定积分的上下限呢?如果是不定积分,用第二类换元法,x=2√2*sinx,可以变成8∫(cosx)^2dx,再用倍角公式化成4∫cos2x+1dx=2sin2x+4x+C
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
y=√(1-x²)*arccosxy'=[√(1-x²)]'arcsosx+√(1-x²)*(arccos)'=(1/2)*(1-x²)ˆ(-1/2)
原式=-∫{x^3arccosx/[-√(1-x^2)]}dx =-∫x^3arccosxd(arccosx) =-(1/2)∫x^3d[(arccosx)^2] =-(1/2)x^3(arcc
1^2=(sin^2+cos^2)^2=sin^4+cos^4+2sin^2cos^2所以sin^4+cos^4=1-2sin^2cos^2=(cos^2-sin^2)^2(cos>sin)所以那个式
∫[dx(x^3)/√(1-x^2)]dx=-(1/3)(x^2+2)√(1-x^2)+C1分部积分,原式=∫arccosxd[-(1/3)(x^2+2)√(1-x^2)]=-(1/3)(x^2+2)
大学生吧?这个问题在数学分析或者高等数学里面算是比较基础的问题了.用到的定理是原函数F(X)的反函数的导数为1/F'(X)定理证明首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这
设t=arcosx,则x=cost,0=cosπ/2,1/2=cosπ/3
√10^-3=1/(√10)^3=1/10√10=√10/100
√10^(-2)=√1/10^2=√(1/100)=±1/10.
x^2+2x+lnx把3,2分别带进去想减
其中的∫(secθ)³dθ,请参见下图:其中的∫(secθ)dθ,请参见下图:或:
用三角替换.再问:怎么做?求详细解答再答:设x=sina,那么后面的就可以把根号去掉了。后积分区域变成pai/2-pai/2,积分式为(sina立方*cosa-cosa)da这不就好做了嘛。后面分开来
∫[-√2→√2]√(8-2y²)dy=√2∫[-√2→√2]√(4-y²)dy令y=2sinu,则√(4-y²)=2cosu,dy=2cosudu,u:-π/4→π/4