积分sin^2x(arctane^x arctane^-x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:42:52
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
见图,我觉得应该是对的,你自己再看看过程哈,我敢保证方法是对的
不定积分求出来是-2xcosx+2sinx+C定积分的话积分范围变为x^1/2再问:过程呢再答:分部积分学了没先令t=x^1/2原式=2tsintdt=-2tdcost=-tcost+costdt=-
你提出这问题,想必你是对arc..这种形式的直接计算有疑问.那就换个方向给你解一下.令arctan(-4/3)=x则tanx=-4/3=sinx/cosx.(1)x∈(-π/2,0).sin²
原式等于:∫[1-cos^2(x)]/cos^3(x)dx=∫dx/cos^3(x)-∫dx/cos(x)=(secxtanx+ln|secx+tanx|)/2-ln|secx+tanx|+C
设括号里面的arctanx=u,即tanu=x所以sinu=x/(1+x^2)^1/2所以原式=arctan[sinu]=arctan[x/(1+x^2)^1/2].
sinα关于α的正弦函数cosαα的余弦函数tanαα的正切函数cotαα的余切函数secaα的正割函数cscαα的余切函数前面加上arc意为它们的反三角函数高中数学会学的
∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(
(1)sin2x5xsin2x2lim-------------------=lim--------------*lim------------*------=2/5x→0sin5xx→0sin5xx
第一题答案为根x,由于tan(theta)=根x/(1+x)所以sin(arctan)=sin(theta),又因为tan(theta)=sin(theta)/cos(theta)=sin(theta
楼上大垃圾……cotX=cosX/sinXarctanX不能用sinXcosX表示
∫arctan(t)dt=tarctant-∫td(arctant)=tarctant-∫t/(1+t^2)dt=tarctant-∫t/(1+t^2)dt=tarctant-(1/2)×∫d(1+t
sqrt(a^2+b^2)*sin(x+arctan(b/a))不是a/
∫[sin^2(x)]*[cos^2(x)]dx=∫(sinxcosx)^2dx=∫(sin2x/2)^2dx=1/4∫(sin2x)^2dx=1/8∫(1-cos4x)dx=x/8-1/32∫cos
基本积分公式有一条是这样的:积分:1/(1+x^2)dx=arctanx+C然后推广之后就有:积分:1/(a^2+x^2)dx=1/a*arctan(x/a)+C对于这道题:积分:1/(10+3x^2
嘿嘿,其实这题很简单.令y=1/x、x=1/y、dx=-1/y²dy∫[arctan(1/x)]/(1+x²)dx=∫arctany/(1+1/y²)*(-1/y
分子分母都除以x,得到极限值=(7+arctanx/x)/(2+sinx/x)arctanx和sinx都是有界函数,那么在x趋于无穷的时候,显然arctanx/x和sinx/x都趋于0所以原极限=7/
sin(arctanx)=x/(根号下1+x²);cos(arctanx)=1/(根号下1+x²).
设а=arctanx,则tana=x,然后根据1+tan^2a=1/cos^2a,算出cosa,再根据sin^2a+cos^2a=1,算出sina