积分xe^-xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:51:21
用换元法
令√x=t则原式=∫(0→π)sint*2tdt=-2∫(0→π)td(cost)=-2tcost|(0→π)+2∫(0→π)costdt=-2tcost|(0→π)+2sint|(0→π)=2π
用分部积分法:∫xe^-xdx=-∫xd(e^-x)=-xe^-x+∫(e^-x)d(x)=-xe^-x-e^-x
∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0
∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2
再问:再问:第三题怎么做
∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-
∵(e^x)'=e^x,x'=1∴dv=(e^x)'dx=e^xdxdu=x'dx=dx
不定积分的答案是一系列的曲线族,并不唯一的.所以有无限多个答案,选哪个都是正确的!∫ secx dx = (1/2)ln|(1 + sinx
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
∫xe^(-ax)²dx=∫1/2e^(-ax)²dx²=∫1/2a²*e^(-ax)²d(-ax)²=1/2a²*e^(-ax)
补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C