积分x^3(sinx)^2 (x^2 1)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:23:53
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
上网查分部积分法可以解决问题
(17/4)+cos(1)其中cos里面的是弧度制的1而不是1度
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
先变形,后面一直用分部积分法:
原式=∫2x^3dx-∫sinxdx+5∫√xdx=x^4/2+cosx+10x√x/3+C
被积函数是奇函数,积分值是0.再问:求详细步骤,谢谢了再答:没有这就是详细步奏,因为原函数是求不出的。只能利用定理:奇函数的积分值是0,任意一本高数书上都有这个结论。再答:又变题了吗?x^2*(sin
1)∫2x^3+1/x^2-sinxdx=2/4*x^4-1/x+cosx+C=1/2*x^4-1/x+cosx+C2)∫(cosx-sinx)^2dx=∫cos^2x-2sinxcosx+sin^2
sinx/(sinx+cosx)=(tanxcosx)/(tanxcosx+cosx)=tanx/(tanx+1)令t=tanx,则dt=sec^2xdx=(1+tan^2x)dx=(1+t^2)dx
1、∫x³e^(-x²)dx,t=-x²,dt=-2xdx,dx=(-1/(2x))dt原式=(-1/2)∫(-t)e^tdt=(1/2)∫tde^t,分部积分法=(1/
这个数分书上有原题呢,就是你把他等价,用用那个积分u'v=uv-积分uv',最后积分这边出来一样的,移项,完了就解出来了
要用到分部积分.因为∫(sinx)^3dx=∫((cosx)^2-1)dcosx=(cosx)^3/3-cosx所以∫x(sinx)^3dx=∫xd[(cosx)^3/3-cosx]=x[(cosx)
应该是原函数吧分别是-cosxsinx2xInx
只能用数值积分解决,用matlab的quad函数计算误差在10^(-13)以内求得1.370762168154488再问:不好意思,没说清楚是估值大于什么小于什么详细步骤。谢啦再答: &nb
1.∫(x+1)/(x²+2x+5)dx因为d(x²+2x+5)=(2x+2)dx=2(x+1)dx=1/2∫1/(x²+2x+5)d(x²+2x+5)因为∫1
答:8)选择C∫(1/x²)sin(1/x)dx=-∫sin(1/x)d(1/x)=cos(1/x)+C9)选择B∫f(x)dx=F(x)+C∫e^(-x)*f(e^(-x))dx=-∫f(
若是I=∫[x^2(sinx)^3/(x^4+2x^2+1)]dx,则I=0.若是I=∫{[x^2(sinx)^3/x^4]+2x^2+1}dx,则I=0+∫(2x^2+1)dx=2∫(2x^2+1)