积分号1 x^4 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:08:09
tanx 你只要逆着算就可以了
原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
先把(e^x)(sinx-cosx)放到微分号d里面去,变为积分号1/2)xd(e^x)(-cosx-sinx)然后分布积分
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
原式=∫(0,1)e^xdx=lim(n->∞)[e^(1/n)/n+e^(2/n)/n+e^(3/n)/n+.+e^(n/n)/n](由定积分定义得)=lim(n->∞){(1/n)[e^(1/n)
过程很简单,用第二类换元积分法便可解决请看图:
负二分之一积分号根号下(1-x∧2)d(1-x∧2)再答:可懂了?再问:负二分之一是怎么求的?再答:d(1-x∧2)再答:变成-2xdx再答:而原来只有xdx再答:所以提取-1╱2再问:再答:再答:亲
∫ln(x²+1)dx=x·ln(x²+1)-∫xd[ln(x²+1)]=x·ln(x²+1)-∫xd[ln(x²+1)]=x·ln(x²+
你把分子X改成X+!-1就行了
x²/(1+x²)=1-1/(1+x² ∴∫1-1/(1+x²)dx=x-∫1/(1+x²)dx=x-arctanx+c再问:再问:箭头指的再答:你
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
解∫1/(1-x)²dx=-∫1/(1-x)²d(1-x)=-∫1/u²du=-(-1/u)+C=1/u+C=1/(1-x)+C
分部积分啦!∫xlnx/[(1+x^2)^2]dx=(-1/2)∫lnxd(1/(1+x^2))=(-1/2)lnx/(1+x^2)+(1/2)∫1/[(1+x^2)*x]dx=(-1/2)lnx/(
dx/x(1+x^4)=x^3dx/x^4(1+x^4)=dx^4/4(x^4+x^8)=dx^4/4x^4+dx^4/4(1+x^4)=(lnx^4)/4-ln(1+x^4)/4上下同乘x^3,就很