空间曲线X=t y=t^2 z=t^3在点(1,1,1)的法平面方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:57:27
这个是切平面,再问:你没有正面回答这个问题。
(Ⅰ)∵ρ=4cosθ∴ρ2=4ρcosθ∴x2+y2=4x∴C1的直角坐标方程为x2+y2-4x=0(4分)(Ⅱ)C2的直角坐标方程为3x-4y-1=0(6分)C1表示以(2,0)为圆心,2为半径的
(Ⅰ)∵ρ=4cosθ∴ρ2=4ρcosθ∴x2+y2=4x∴C1的直角坐标方程为x2+y2-4x=0(4分)(Ⅱ)C2的直角坐标方程为3x-4y-1=0(6分)C1表示以(2,0)为圆心,2为半径的
(x-2)/1=(y-4)/4=(z-8)/12(x-2)+4(y-4)+12(z-8)=0.直接微分可出导数,然后得到答案
1.曲线x=t,y=-t^2,z=t^3在点(1,-1,1)处的切向量为(1,-2,3)请问:具体步骤是什么?dx/dt=1,dy/dt=-2t,dz/dt=3t²此时t=1代入即得切向量T
本题应该是少了一个小前提:M在空间曲线上,并且对应于参数t=t0还有就是少打了z=c(t)设点M对应曲线在M点处的切线方程:(x-x0)/a′(t0)=(y-y0)/b′(t0)=(z-z0)/c′(
依题意f(x,y)必为其次函数,且为2次的.设Z=f(x,y)=Ax^2+Dxy+By^2由题意2=A-2D+4B.(1)fx(1,-2)=2A-2D=4.(2)由(-1)*(1式)+(2式)得fy(
∵直线x=2-12ty=-1+12t(t为参数)∴直线的普通方程为x+y-1=0圆心到直线的距离为d=12=22,l=24-(22)2=14,故答案为:14.
二者都对,对于曲线的参数方程,可以以很一般的一个量t作为参数(如曲线切线与x轴的夹角等),也可以以弧长s为参数,对于以弧长为参数的参数方程,表征曲线特征的量大多有形式比较简单的公式,就像你说的曲率k=
(1)切线方程为什么是(x-x0)/a'(to)=(y-yo)/b'(to)=(z-zo)/c'(to)切向量=﹛a'(to),b'(to),c'(to)﹜.﹙x,y,z﹚是切线上←→﹛x-x0,y-
平面x+2y+z=1的法线方向{1,2,1}曲线x=t,y=t^2,z=t^3在t的切线方向{1,2t,3t²}.平面‖切线↔法线⊥切线.∴平面‖切线↔1*1+2*2
(1)W(t)的自协方差函数Cw(t1,t2)=E{[W(t1)-Ew(t1)][W(t2)-Ew(t2)](利用均值为0化简)=E(W(t1)W(t2))=E[(X+t1Y+t1^2Z)(X+t2Y
曲线x=t,y=t^2,z=t^3的切线斜率(求导)x=1,y=2t,z=3t^2切线平行于平面x+2y+z=4,切线斜率与平面的法向量点积为01*1+2t*2+3t^2*1=0t=-1或-1/3,代
先计算导数为0的点.f(x)'=3x^2+6x=x(6+3x)x=0x=-2为导数为零点.x=0代入f(x)=0x=-2代入f(x)=4另外x=-5x=5分别代入f(-5)=-50f(5)=200极值
可知曲线是圆:x²+y²=4半径为2圆上有3个点到直线距离为一.(利用初中的知识可知,该直线一定垂直平分圆的半径)x=t,y=t+by=x+b也就是圆心到直线距离是1d=|b|/根
T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t
曲线C的极坐标方程为ρ=4cosθ,化为ρ2=4ρcosθ,化为x2+y2=4x,配方为(x-2)2+y2=4,其圆心C(2,0),半径r=2.由直线x=−1+ty=2t消去参数t可得y=2x+2.∴
选B 先求曲线x=t,y=-t^2,z=t^3的切向量,就是对曲线方程求导所得,即 x=1,y=-2t,z=3t^2 切线平行于平面z+2y+x=4,即就是曲线切向量与平面的法向量之积为0,即
再问:错了,答案是y=2/(3e^(x^2)-1)再答:没有给出初值条件,我只是帮你找到通解而已不跳步了,给个正式的通解你再问:如何证明?再答:那就要题目给条件了例如给了y|(x=0)=1代入通解方程
这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……