第一类曲面积分xyzds
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:32:45
谁说滴与方向无关再答:再问:课本上说的再问:那你如何解释?再问:我在线等再问:再问:详细解释一下再答:你把如何计算曲线积分的那一页发给我再答:我写的你看懂了?再问:你解释一下?再问:你解释一下?再答:
记V={(x,y,z):x^2+y^2
上下同除与x²,很好作啊∫(x²-1)/(x^4+1)dx=∫[1-(1/x²)]/[x²+(1/x²)]dx=∫1/[(x+(1/x))²
第一类是对弧长积分,即定义在弧长上,没有方向.如求非密度均匀的线状物体质量第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题假设曲线正向,两者可互换,弧长元dscosθ=dx,ds
是的,第一类曲面积分与定积分,重积分类似,也有相同的奇偶对称性.第二类(对坐标的曲面积分)则不具备一般的奇偶对称性,而是相反的,因为假如被积函数是奇函数,则在两片曲面上的符号相反,而把曲面积分转换成二
a195320898关于这个问题你可以参考以下链接:看一下例题及定义相信你就会明白.
再答:应该看得清楚吧,看不清楚给我说再问:谢谢你~
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
面积=∫∫dS=∫∫√[1+(z'x)²+(z'y)²]dxdy第二个是二重积分,z=f(x,y)是围成立体的上下两个面,就是躺着的圆柱体表面x²+z²=R&s
二重积分算的是平面区域定义域的面积再答:而曲面积分可以计算三维曲面面积再答:也就是说二重积分最多就只能计算平面闭区域的面积,而曲面积分可以算三维曲面面积,例如球表面面积再答:希望采纳,欢迎追问再答:希
根据r的定义,就是根号下x^2+y^2+z^2;(曲面积分定义)=积分号积分好)1/(R^2+z^2)dS后把圆柱侧面分成xoz对称的俩曲面,在右半侧面区面积分定义,按照投影到xoz坐标面的步骤
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
再答:如果满意,请点右上角“采纳答案”
一般没有因为曲面积分大都是化为二重积分,你只要能化为二重积分,就可以利用二重积分的换元法了.
再答:原式等于这张图再问:谢了再答:采纳一下再问:我还有需要你帮忙再答:嗯说再问: 再问:要用第二类换元积分法再答:等等刚吃完饭再问:嗯再答: 再问:我可以加你QQ吗再
关于第一类的对称性,我记得前两天我很详细得给你写过,如果有不明白可以追问.至于第二类,我不建议使用对称性来做,因为第二类的曲线(或曲面)是有向的,对称性很难考虑,也容易出错.第二类曲线积分一般是用参数
面积=∫∫√[1+(z'x)²+(z'y)²dxdy其中z'x=-x/z,z'y=-y/z√[1+(z'x)²+(z'y)²=|a/z|现在分析被积区域的取值范