等差数列an和bn中,a11 b11=4 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:45:49
等差数列an和bn中,a11 b11=4 3
两个正项数列{An}{Bn}中,已知An,Bn²,An+1成等差数列,Bn²,An+1,Bn+1&#

an,(bn)^2,a(n+1)成等差数列2(bn)^2=an+a(n+1)--①由(bn)^2,a(n+1),(b(n+1))^2成等比数列(a(n+1))^2=[bnb(n+1)]^2∴a(n+1

等差数列{an}、{bn}中,a1=36,b1=64,a100+b100=100,则数列{an+bn}的前200项和为.

a100+b100=a1+b1=100a1+b1+99d1+99d2=a1+b1可知2者的公差互为相反数所以an+bn=a1+(n-1)d1+(n-1)d2+b1=a1+b1=100所以{an+bn}

等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn

An=[2n/(3n+1)]BnAn-1=[2n/(3n+1)]Bn-1lim(n→∞)an/bn=lim(n→∞)[An-An-1]/[Bn-Bn-1]=lim(n→∞)[2n/(3n+1)][Bn

在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈

(1)由条件得2bn=an+an+1,an+12=bnbn+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25…(6分)(2)猜测an=n(n+1),bn=(n+1)2用数学

已知等差数列an中,公差d>0,首项a1>0,bn=1/anan+1,数列bn的前n项和为Sn,则limSn=

根据bn=1/(an*a(n+1)),我们知道,bn=[1/an-1/a(n+1)]/d.因此,Sn=[1/a1-1/a2+1/a2-1/a3+...+1/a(n-1)-1/an]/d=[1/a1-1

在等差数列中,a2+a3+a4=15,a5=9,设bn=(根号三)1+an,求数列bn的前n项和sn

a2a3a4=15则a3=5a4=(59)÷2=7则公差d=2则a2=3,a1=1,an=2n-1bn=根号3×(1an)bn=2n×根号3b1=2根号3,b2=4根号3,b3=6根号3,则公差d=2

已知等差数列{an}中a2=6,a5=15,若bn=a2n,则数列{bn}的前5项和等于

d=(a5-a2)/(5-2)=9/3=3a1=a2-d=6-3=3所以an=3+3(n-1)=3nbn=a(2n)=6n所以前5项和=(6+30)*5/2=18*5=90再问:怎么知道{bn}是等差

已知等差数列{an}中,a2=6,a5=15.若bn=a(2n),则数列{bn}的前5项和等于?

由已知,得,公差d=(a5-a2)/3=3所以a1=a2-d=6-3=3所以an=3nbn=a2n=6n所以{bn}是以6为首项,6为公差的等差数列所以数列{bn}的前5项和=(6+30)*5/2=9

在等差数列{an}中,a2=9,a5=21,设bn=2^an,求数列{bn}的前n项和sn

等差数列,所以an=a1+(n-1)dy由a2=9,a5=21,可以根据上面的式子算出a1=5,d=4所以an=4n+1所以bn=2^4n+1bn+1/bn=2^4(n+1)+1/2^(4n+1)=2

在等差数列{an}中,a1+a3=6,a11-21,设bn=1/n(an+3),求数列 {bn}的前n项和sn

在等差数列{an}中,a1+a3=6,a11=21,可解得a1=1,d=2.∴an=2n-1∴bn=1/n(an+3)=1/[n(2n+2)]=[(1/n)-1/(n+1)]/2∴Sn=b1+b2+.

设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,

a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(

数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和s

a(n+1)=2an+2^na(n+1)/2^n=2an/2^n+1a(n+1)/2^n=an/2^(n-1)+1a(n+1)/2^n-an/2^(n-1)=1,为定值.a1/2^(1-1)=1/1=

已知等差数列an中 a5=9 a2+a6=14 若bn=an+2∧n 求bn的前n项和sn

a2+a6=2a4=14a4=7公比d=a5-a4=9-7=2an=a4+d(n-4)=7+2(n-4)=2n-1bn=an+2^n=2n-1+2^nSn=(2+2n)*n/2-n+2(1-2^n)/

等差数列{an}中an=2n+1,等比数列{bn}满足b1=a2,b2=a4求{bn}前n项和Sn

1=a2=5b2=4a=9所以q=b2/b1=9/5Sn=b1(1-q^n)/(1-q)=(25/4)[(9/5)^n-1]

在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n

(1)a1=2,b1=42*4=2+a2,则a2=66^2=4*b2,则b2=92*9=6+a3,则a3=1212^2=9*b3,则b3=16由a1=2=1*2,a2=6=2*3,a3=12=3*4猜

{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)

(2)由已知得an=n(n+1),bn=(n+1)^2,所以an+bn=2n^2+3n+1>2n^2+2n=2n(n+1),所以1/an+bn

已知等差数列{an}中,a2=6,a5=15,若bn=a3n,则数列{bn}的前9项和等于______.

由a2=a1+d=6a5=a1+4d=15⇒a1=3d=3∴an=3+3(n-1)=3n       bn=a3n=9n∴S9=9

已知等差数列{an}中,a2=6,a5=15,若bn=a2n,则数列{bn}的前5项和等于(  )

设{an}的公差为d,首项为a1,由题意得a1+d=6a1+4d=15,解得a1=3d=3;∴an=3n,∴bn=a2n=6n,且b1=6,公差为6,∴S5=5×6+5×42×6=90.故选C.

等差数列An和等比数列Bn中a1=b1>0,a2n+1=b2n+1>0则

a1=b1a2n+1=b2n+1a2n+1-a1=b2n+1-b1=2nd=b1(q^2n-1)=b1(q^n+1)(q^n-1)nd=b1(q^n+1)(q^n-1)/2an+1-bn+1=a1+n

正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列

a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列2.√b1=√