等差数列[an]中,若a1+a3+a5=-1则a1+a2+a4+a5=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:15:59
an若为等差数列,则an=n.由bn=an+1+(-1)n次方乘以an可知bn奇数相都为1偶数项为2an+1所以前bn前n项和就好求了····但是看第二问觉得你题目打错了还是怎么的
{bn}是等差数列因为,bn=an^2-a(n-1)^2=[an+a(n-1)][an-a(n-1)]=an+a(n-1)所以,b(n+1)-bn=a(n+1)+an-an-a(n-1)=a(n+1)
1.a1+a101=2a51a2+a100=2a51a3+a99=2a51……a50+a52=2a51共50个2a51和一个原本的a51所以50×2a51+a51=0a51=0所以a3+a99=2a5
(I)设数列{an}的公差为d,由已知有a1=3a1+3d=12(2分)解得d=3(4分)∴an=3+(n-1)3=3n(6分)(Ⅱ)由(I)得a2=6,a4=12,则b1=6,b2=12,(8分)设
在等差数列{an}中,a1=10,公差为d,(1)由题意,S10=10a1+45d>0,得d>-20/9;S11=11a1+55d
∵a1=13,a2+a5=4,∴2a1+5d=4,即d=23,∵an=33=a1+(n-1)d,∴13+23(n−1)=33,解得n=50,故答案为:50
a5+a6+a7+a8=242(a1+a12)=24a1+a12=12
设an=a1+(n-1)d(1):a6=a1+5d>0.(1)a7=a1+6d
a1+...a100=0则50*(a50+a51)=0即a50+a51=0由于a10,a500,因此b1,.b48都小于0b49=a49a50a51>0b50=a50a51a520,b51以上都大于0
公差为3则a3=a1+2*3=a1+6a4=a1+3*3=a1+9a1,a3,a4成等比数列则(a3)^2=a1*a4(a1+6)^2=a1*(a1+9)a1^2+12a1+36=a1^2+9a1a1
让我们首先运用一下感觉,因为A10=0并且AN等差,所以A9+A11=0,A8+A12=0,...,A1+A19=0,即S19=0,所以A1+A2+A3+...+An=A1+A2+A3+...+An+
an=3n-1由an+1=an+3得知公差d=3所以an=a1+(n-1)d=3n-1
a8+a14=2a1+20d=0a1=-10d0Sn=na1+n(n-1)d/2=-10nd+n^2d/2-nd/2=(d/2)*n^2-(21d/2)n,对称轴是n=21/2=10.5所以,当n=1
设差数列{an}的公差为d,由a1,a2,a4恰好成等比数列,得:(a1+d)2=a1(a1+3d),整理得:d2=a1d.若d=0,则a1=a4,a1a4=1;若d≠0,则a1=d,a4=a1+3d
是an=a+n-1a(n+1)=a+nbn=1-2a-2nb(n-1)=1-2a-2(n-1)bn-b(n-1)=-2公差为-2
a7+a15=0a8+a14=a9+a13=a10+a12=2a11=0前11项均不大于0所以S10=S11均属于最小
0等差数列的前N项和是过原点的二次函数因为Sm=Sn=L所以该函数的对称轴是X=(M+N)/2所以原点关于该轴的对称点是Sm+n即Sm+n=0又Sm+n=(m+n)(a1+a(m+n))/2所以a1+
1S13/S7=[(a1+a13)*13/2]/[(a1+a7)*7/2]=[a7*13]/[a4*7]=26/72A1+A4+A10+A16+A19=150A1+A19=2A10A4+A16=2A1
a1=a,等比=db1=a+1,等差=ka2=a*db2=a*d+1=a+1+ka3=a*d*db3=a*d*d+1=a+1+2ka*d*d=a+2k;a*d=a+k(a+k)^2=a^2+2ka+k