等差数列的前n项和SN,a1=1 根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:07:16
1)a11+a11+d+a11+2d+a11+3d=s14=986d=98d=49/3a1=490/3an=490/3+(n-1)*49/32)a1>=6a11=a1+10d>0s14=14a1+91
前16项和最大.因为等差数列前n项和是关于n的二次函数,设为f(n).已知f(13)=f(19),所以对称轴n=(13+19)/2=16
http://zhidao.baidu.com/question/88231937.html?fr=qrl&cid=983&index=2S1=a1=-(2/3),S2+1/S2+2=a2,因为S2=
设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n
就是Sn是等差数列若q≠1Sn=a1(1-q^n)/(1-q)则2Sn=S(n-1)+S(n+1)所以2a1(1-q^n)/(1-q)=a1[1-q^(n-1)]/(1-q)+a1[1-q^(n+1)
S1=a1=-(2/3),S2+1/S2+2=a2,因为S2=(a1+a2),所以S2+1/S2+2=S2-a1=S2+2/3,解得S2=-(3/4),同理,S3+1/S3+2=a3=S3-S2=S3
数列{Sn/n}构成一个公差为2的等差数列,∴Sn/n=2n,∴Sn=2n^2,∴a3=S3-S2=18-8=10.
an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1
1、a4-a1=-9=3dd=-3an=25-3(n-1)=-3n+28an>0-3n+28>0n0,a10S8S9>S10所以n=9.Sn最大2、a2=a1+d=22a20=-60+28=-32有1
由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn
1.ASn=2n+n(n-1)(-2)/2=-n^2+3n由二次函数知当n=1或n=2有最大值2.对n的表达式分子分母同时除以n分母就是n+110/n根据基本不等式分母最小值为21(n=10或n=11
证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-
1.s2/s1=c+1s2=c+1a2=cs3/s2=(2+c)/2s3=(2+c)(c+1)/2a3=c(c+1)/22a2=a1+a32c=1+c(c+1)/2c^2-3c+2=0c=1或22.c
由Sn+2-Sn=36,得:an+1+an+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.
Sn=nA1+(1/2)n(n-1)d=2n+n(n-1)=n(n+1)1/Sn=1/[n(n+1)]=[(n+1)-n]/[n(n+1)]=1/n-1/(n+1)Tn=1/S1+1/S2+……+1/
设an=a1+(n-1)d有Sn=na1+n(n-1)d/2limSn/(n^2+1)=lim[na1+n(n-1)d/2]/(n^2+1)=lim[a1/n+d/2-d/(2n)]/(1+/n^20
S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+
/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)
Sn与S(n+1)的大小,可得出n的范围,例如a1=-20,d=1,a2=-19S1=-20,S2=-39,S20,和不一定越来越大,知道某一项
S2n=2n+n*(2n-1)dSn=n+n(n-1)d/24Sn=4n+2(n^2-n)dS2n/Sn=4S2n=4Sn4n+2d(n^2-n)=2n+(2n^2-n)d整理,得dn=2nd=2S2