等差数列的前n项和为sn ,a1=1 根号2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:09:03
等差数列的前n项和为sn ,a1=1 根号2
已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和.求1、lim nan/Sn 2、lim (Sn+Sn+1)

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

设等差数列{an}前n项和为Sn,且a1>0,S13=S19,求Sn的最大值

前16项和最大.因为等差数列前n项和是关于n的二次函数,设为f(n).已知f(13)=f(19),所以对称轴n=(13+19)/2=16

已知等差数列{an}的前N项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n大于等于2)

http://zhidao.baidu.com/question/88231937.html?fr=qrl&cid=983&index=2S1=a1=-(2/3),S2+1/S2+2=a2,因为S2=

已知等差数列{an}的前n项和为Sn,且a1不等于0,求(n*an)/Sn的极限、(Sn+Sn+1)/(Sn+Sn-1)

设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n

已知等差数列{an}的前N项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n大于等于2),

S1=a1=-(2/3),S2+1/S2+2=a2,因为S2=(a1+a2),所以S2+1/S2+2=S2-a1=S2+2/3,解得S2=-(3/4),同理,S3+1/S3+2=a3=S3-S2=S3

已知等差数列an中a1=2,其前n项和sn,若数列{Sn/n}构成一个公差为2的等差数列,则a3=?

数列{Sn/n}构成一个公差为2的等差数列,∴Sn/n=2n,∴Sn=2n^2,∴a3=S3-S2=18-8=10.

已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列

an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1

已知Sn为等差数列an的前n项和 a1=25 a4=16

1、a4-a1=-9=3dd=-3an=25-3(n-1)=-3n+28an>0-3n+28>0n0,a10S8S9>S10所以n=9.Sn最大2、a2=a1+d=22a20=-60+28=-32有1

设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,

设首项为a(值这样书写容易点),根号S1、根号S2、根号S3成等差,解出a=1,所以an=2n-1.bn是一个等差和等比相乘的数列,用错位法求和.再问:能不能写一下过程?再答:好的。S1=首项a,S2

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

已知等差数列{an}中,a1=2,d=-2,前n项的和为 Sn,则 Sn( )

1.ASn=2n+n(n-1)(-2)/2=-n^2+3n由二次函数知当n=1或n=2有最大值2.对n的表达式分子分母同时除以n分母就是n+110/n根据基本不等式分母最小值为21(n=10或n=11

若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列(Sn/n)为等差数列,且通项

Tn=b1*b2*b3*……*bn=b1*(b1*q)*(b1*q^2)*……*[b1*q^(n-1)]=(b1)^n*q^[1+2+……+(n-1)]=(b1)^n*q^[n(n-1)/2]={b1

设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列

1.s2/s1=c+1s2=c+1a2=cs3/s2=(2+c)/2s3=(2+c)(c+1)/2a3=c(c+1)/22a2=a1+a32c=1+c(c+1)/2c^2-3c+2=0c=1或22.c

设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-2/17

n=9再问:为什么再答:等一下,我写一下过程再答:再答:再答:不懂追问再问:那你上面为什么说n=9?再答:说错了再答:n=9和10时结果一样再答:n=10时an=0再问:哦哦,我知道了

设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2-Sn=36,则n=(  )

由Sn+2-Sn=36,得:an+1+an+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.

已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An?

S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+

数列前n项和为sn,a1=1,an+sn是公差为2的等差数列,求an-2是等比数列,并求sn

证明:由题意:an+Sn=2n……(1),所以a(n+1)+S(n+1)=2(n+1)……(2)用(2)-(1)得:2a(n+1)-an=2,即2[a(n+1)-2]=an-2,即[a(n+1)-2]

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)