等差数列的前n项和为Sn,已知a3=11,S15>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:46:58
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-
Sn+1/(2n+1)-Sn/(2n-1)=1Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)an=4n-31/√an=2/2√(4n-3)>2/(√4n-3
设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n
(Ⅰ)∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,∴2(a1+a1q+a1q2)=a1+a1+a1q,解得q=-12或q=0(舍).∴q=-12.(Ⅱ)∵a1-a3=3,q=-12
由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs
1、a4-a1=-9=3dd=-3an=25-3(n-1)=-3n+28an>0-3n+28>0n0,a10S8S9>S10所以n=9.Sn最大2、a2=a1+d=22a20=-60+28=-32有1
由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn
S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列即s3-s1=s2-s31+q+q^2-1=1+q-(1+q+q^2)q^2+q=-q^2q=0或-1/2如果a1-
由等差数列的性质Sn=na1+n(n-1)d/2=dn2/2+(a1-d/2)n=An2+Bn即A=d/2B=a1-d/2同样地Tn=nb1+n(n-1)p/2=pn2/2+(b1-p/2)n=Cn2
1.ASn=2n+n(n-1)(-2)/2=-n^2+3n由二次函数知当n=1或n=2有最大值2.对n的表达式分子分母同时除以n分母就是n+110/n根据基本不等式分母最小值为21(n=10或n=11
S12=6(a6+a7)>0a6+a7>0S13=13*a7-a7绝对值最小的是第7项
1.s2/s1=c+1s2=c+1a2=cs3/s2=(2+c)/2s3=(2+c)(c+1)/2a3=c(c+1)/22a2=a1+a32c=1+c(c+1)/2c^2-3c+2=0c=1或22.c
∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214
Sn=((An+1)/2)^2A1=S1=((A1+1)/2)^2(A1-1)^2=0A1=1Sn=n(A1+An)/2=n(1+An)/2=((An+1)/2)^2(An+1)/2=nAn=2n-1
设公差为dS12=(a3+a10)*6=(2a3+7d)*6=(24+7d)*6>0S13=a7*13=(a3+4d)*13=(12+4d)*130且12+4d
因为a1+a11=a3+a9所以S11=(a1+a11)*11/2=(a3+a9)*11/2=(24+a9)*11/2=0所以a9=-24所以d=(a9-a3)/6=-8a1=a3-2d=24+16=
等差数列an=p*(n-1)+a1,sn=(a1+an)*n/2=n*a1+p*(n-1)*n/2a3=2*p+a1=24s11=11*a1+55*p=0得a1=40,p=-8(1)an=-8n+48
{an}是等差数列,所以Sn=(a1+an)n/2S8=(a1+a8)*8/2=-68a8=2代入a1=-19a8=a1+7d=2d=3an=a1+(n-1)dan=3n-22Tn=(a1+an)n/