等差数列的前n项和为sn,若a2 a4 a15

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:07:07
等差数列的前n项和为sn,若a2 a4 a15
等差数列的前n项和为Sn,若a10=5,则S19为多少?

设首项a1,公差da10=a1+9d=5a19=a1+18dS19=(a1+a19)*19/2=(a1+a1+18d)*19/2=19*(a1+9d)=19a10=95

等差数列前n项和为Sn ,若Sn=Sm(m>

Sn=na1+(1/2)n(n+1)dSm=ma1+(1/2)m(m+1)d两式相减,得:0=(n-m)a1+(1/2)d[(n²-m²)+(n-m)]两边除以n-m,得:a1+(

等差数列{An}的前n项和为Sn,若 lim Sn/n方 =2

答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为(  )

设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2.若q=1,则Sn=na1,式子显然不成立.若q≠1,则有2a1(1−qn)1−q=a1

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q=?

因为Sn+1,Sn,Sn+2成等差数列S(n+1)+S(n+2)=2*S(n)(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1

已知等差数列{an}的前n项和为Sn,且a1不等于0,求(n*an)/Sn的极限、(Sn+Sn+1)/(Sn+Sn-1)

设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n

设等差数列 {an}的前n 项和为Sn,若S9>0 ,S10

你数列当中的第五个元素

已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs

设Sn为等差数列{an}的前n项和,S7=42,Sn=510,若a(n-3)=45(n>7),则n等于

an=a1+(n-1)dsn=na1+n(n-1)d/2s7=7a1+21d=42……(1)sn=na1+n(n-1)d/2=510……(2)a(n-3)=a1+(n-4)d=45……(3)由(3)、

设等差数列{an}的前n项和为Sn,若-a2013

S2013=2013(a1+a2013)/2因为a1+a2013>0所以S2013>0S2014=2014(a1+a2014)/2因为a1+a2014

等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

∵SnTn=2n3n+1,∴anbn=a1+a2n−1b1+b2n−1=S2n−1T2n−1=2(2n−1)3(2n−1)+1=2n−13n−1∴limn→∞anbn=limn→∞2n−13n−1=l

已知等差数列{an} 的前n项和为Sn,若S12>0,S13

S12=6(a6+a7)>0a6+a7>0S13=13*a7-a7绝对值最小的是第7项

若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列(Sn/n)为等差数列,且通项

Tn=b1*b2*b3*……*bn=b1*(b1*q)*(b1*q^2)*……*[b1*q^(n-1)]=(b1)^n*q^[1+2+……+(n-1)]=(b1)^n*q^[n(n-1)/2]={b1

求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4

n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a

已知等差数列{an}{bn}的前n项和分别为Sn,Tn,若S

∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214

设Sn是等差数列{an}的前n项和,若a

由题意可得S13S7=13(a1+a13)27(a1+a7)2=13(a1+a13)7(a1+a7)=13×2a77×2a4=137×a7a4=137×2=267.故答案为:267

等差数列〔an 〕的前n 项和为Sn,已知Sm等于a ,Sn 减Sn-m 等于b ,n ,m 是正的

由:Sm=a,及b可求a1;由:Sn=Sn-m+Sm+(n-m)*m*bSn-Sn-m=b连立求得n,由:a1,n即可求Sn