等差数列的前n项和为sn,若a2 a4 a15=3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:03:31
设首项a1,公差da10=a1+9d=5a19=a1+18dS19=(a1+a19)*19/2=(a1+a1+18d)*19/2=19*(a1+9d)=19a10=95
Sn=na1+(1/2)n(n+1)dSm=ma1+(1/2)m(m+1)d两式相减,得:0=(n-m)a1+(1/2)d[(n²-m²)+(n-m)]两边除以n-m,得:a1+(
答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-
设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2.若q=1,则Sn=na1,式子显然不成立.若q≠1,则有2a1(1−qn)1−q=a1
因为Sn+1,Sn,Sn+2成等差数列S(n+1)+S(n+2)=2*S(n)(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1
设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n
你数列当中的第五个元素
由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs
an=a1+(n-1)dsn=na1+n(n-1)d/2s7=7a1+21d=42……(1)sn=na1+n(n-1)d/2=510……(2)a(n-3)=a1+(n-4)d=45……(3)由(3)、
S2013=2013(a1+a2013)/2因为a1+a2013>0所以S2013>0S2014=2014(a1+a2014)/2因为a1+a2014
∵SnTn=2n3n+1,∴anbn=a1+a2n−1b1+b2n−1=S2n−1T2n−1=2(2n−1)3(2n−1)+1=2n−13n−1∴limn→∞anbn=limn→∞2n−13n−1=l
S12=6(a6+a7)>0a6+a7>0S13=13*a7-a7绝对值最小的是第7项
S4=4a+6d>=10所以-4a-6d
Tn=b1*b2*b3*……*bn=b1*(b1*q)*(b1*q^2)*……*[b1*q^(n-1)]=(b1)^n*q^[1+2+……+(n-1)]=(b1)^n*q^[n(n-1)/2]={b1
n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a
点击图片查看解答
∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214
由题意可得S13S7=13(a1+a13)27(a1+a7)2=13(a1+a13)7(a1+a7)=13×2a77×2a4=137×a7a4=137×2=267.故答案为:267
由:Sm=a,及b可求a1;由:Sn=Sn-m+Sm+(n-m)*m*bSn-Sn-m=b连立求得n,由:a1,n即可求Sn