等差数列部分和级数收敛发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:01:43
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
这个命题的逆命题是成立的但是由和是收敛的无法判断每个都是收敛的还有可能两个级数都是发散的,但是他们的和收敛
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
单调递减趋于0,变成积分,1-cos变成2sin^2,1/2x变成t,总之就是sin/t的平方,从0到1/2,而从0到无穷是pi/2(书上都有),所以是收敛的
反证法假设(一个发散级数∑An加上一个收敛级数∑Bn)结果∑(An+Bn)发散不正确即∑(An+Bn)收敛那么由∑(An+Bn)收敛,∑Bn收敛,可知∑[(An+Bn)-Bn]收敛,即∑An收敛,与已
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
发散hi里说吧~这个不难证
发散.级数其实就是-1/(4n+1),与-1/n的敛散性相同,所以发散再问:用比较审敛法的极限形式,除以-1/n,等于1/4,又因为-1/n发散,所以原级数发散,对吧?再答:没错
1/2^n由等比级数可知收敛于1;而1/3n发散收敛级数加上发散级数为发散级数
极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛
假设它们的和为收敛级数,有两个收敛级数的和(差)为收敛级数可知,加上的那个级数是收敛的,故矛盾!
知limn/(lnn)^9->∞那么存在N足够大,使得当n>N时,1/n*1/lnn(1->N)∑1/(lnn)^10+(N+1->∞)∑1/n*1/lnn而∑1/n*1/lnn由比较积分得知O(∑1
1+1/2+1/3+…1/n+…是调和级数,老师讲的,这种级数就是发散的1+1/8+1/27+…1/(n^3)+…=1+1/2^3+1/3^3+...+1/n^3+...这种是p级数p就是那个指数如果
是条件收敛的,通项加绝对值在第三项后就>1/n
两个函数有极限当然他们的和差都有极限 并且就是他们极限的和差两个级数发散的话和、积是发散的绝对值的和也是发散的可以看级数收敛的必要条件.两个级数一个收敛一个发散的话和、积、绝对值的和爷发散&
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
判断一个级数的收敛性时首先看它是否绝对收敛(特别是交错级数),若绝对收敛则原级数收敛,否则…你的判断顺利正确.判断绝对收敛的方法:将原级数加上绝对值,再根据其级数特点用相应的方法(如比较法,比值法,根
条件收敛再答:再答:请采纳吧