等比数列an满足a1 a6=11,a3a4=9分之32,且公比q∈(0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:13:11
等比数列an满足a1 a6=11,a3a4=9分之32,且公比q∈(0,1)
已知等比数列{an}满足a2+a4=30,a3=12

a2a4=a3*a3=144a2+a4=30a2=6a4=24q=2a1=3an=3*2^(n-1)或者a2=24a4=6q=1/2a1=48an=48*(1/2)^(n-1)数列{an}单调递增q>

等比数列{an}的首项a1=1,公比为q且满足q的绝对值

S1=a1(1-q)/(1-q),S2=a1(1-q^2)/(1-q),...,Sn=a1(1-q^n)/(1-q).S1+S2+...+Sn=[a1/(1-q)]*[1-q+1-q^2+...+1-

等比数列{an}满足a1+a2=3,a2+a3=6,则a7=______.

由a1+a2=a1(1+q)=3①,a2+a3=a1q(1+q)=6②,②÷①得:q=2,把q=2代入①得到a1=1,则a7=26=64.故答案为:64

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列

lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列

已知数列{an}满足a1=1,an+1=2an+1.(1)求证:数列{an+1}是等比数列;(2)求an和Sn的表达式.

(1)∵a(n+1)=2an+1∴a[n+1]+1=2a[n]+2=2(a[n]+1)∴a[n]+1为等比数列,等比=2(2)a[n]+1=(a[1]+1)*2^(n-1)=2^n∴a[n]=-1+2

已知数列an满足a1=2,an+1=2an-n+1,证明(an-n)是等比数列,并求出(an)通项公式

a(n+1)=2an-n+1a(n+1)=2an-2n+(n+1)a(n+1)-(n+1)=2(an-n)∴{an-n}是公比为2,首项为2-1=1的等比数列an-n=1×2^(n-1)=2^(n-1

等比数列an满足 lim(a1+a2+a3+...+an)=1/2 求a1取值范围

lim(a1+a2+a3+...+an)=1/2说明等比数列为收敛数列,即公比q0Sn=a1(1-q^n)/(1-q)limSn=a1/(1-q)=1/2a1=1/2-1/2q因为0

等差数列{an}满足a1=1,且a1、a2、a4成等比数列,求an

设an=1+d(n-1)a1*a4=a2*a2故1*(1+3d)=(1+d)(1+d)解上面的方程得d=0或1(0舍去)故d=1an=n

已知数列{An}满足lgAn=3n+5,证明An是等比数列.

lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助

已知数列{an}满足Sn=2n-an(n属于N*),证明{an-2}是等比数列

Sn=2n-an,(1)S(n+1)=2*(n+1)-a(n+1)(2)(2)-(1)得:a(n+1)=2-a(n+1)+an.即:2*a(n+1)=2+an.变形:2*[a(n+1)-2]=an-2

等比数列{bn}与数列{an}满足bn=3的An次方,判断{an} 是何种数列,并给出证明

设{bn}共比为q则q=b(n+1)/b(n)=3^a(n+1)/3^a(n)=3^[a(n+1)-a(n)]所以a(n+1)-a(n)=log(3,q)是定值,所以{an}是等差数列若a8=a13=

若等比数列an满足anan+1=16n,则公比为(  )

当n=1时,a1a2=16①;当n=2时,a2a3=256②,②÷①得:a3a1=16,即q2=16,解得:q=4或q=-4,当q=-4时,由①得:a12×(-4)=16,即a12=-4,无解,所以q

已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an

a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n

等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=(  )

∵等比数列{an}满足a2+a4=20,a3+a5=40,∴a3+a5=q(a2+a4)=20q=40,解得q=2.故选:C.

等比数列{an}满足:a1=1/2,且an-an-1=1/2的n次方,求an

an-a[n-1]=1/2^na[n-1]-a[n-2]=1/2^(n-1)...a2-a1=1/2^2以上各式相加得:an-a1=(1/2^2+...+1/2^n)=1/2^2*(1-1/2^(n-

已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn

n=b1.q^(n-1)bn=an-3nan=bn+3n=b1.q^(n-1)+3nSn=a1+a2+...+an=b1(q^n-1)/(q-1)+3n(n+1)/2

数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.

(1)bn+1=(an+1-2)/(1-an+1)=(an-2)/(2-2an)bn=(an-2)/(1-an)bn+1/bn=1/2b1=-1/2bn为等比数列(2)(an-2)/(1-an)=-1

数列{an}满足 a1=2,a2=5,an+2=3an+1-2an.(1)求证:数列{an+1-an}是等比数列; (2

(1)证明:由条件得a[n+2]-a[n+1]=2(a[n+1]-a[n])首项为a[2]-a[1]=5-2=3,公比为2,所以{a[n+1]-a[n]}为等比数列由(1)得a[n+1]-a[n]=3

已知等比数列an,首项bn满足bn=log3an,其前n项和为Sn

已知等比数列an,首项为81,数列bn满足bn=log3an,其前n项和sn(1)证明:bn-b(n-1)=log(3)an-log(3)an-1=log(3)an/a(n-1)=log(3)q∵b1