等比数列an的公比q大于1,且a2分之一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:48:55
我猜你的题目给出的条件是a(n+2)=a(n+1)+2an,就像楼上所列正解如下a3=a2+2a1=2a1+1a4=a3+2a2=2a1+1+2=2a1+3又an为等比数列,a2=a1*q,a3=a1
因为am,an,ap成等比数列,则由等比中项,有:(an)^2=am*ap(a1*q^(n-1))^2=a1*q^(m-1)*a1*q^(p-1)(这是把通项公式代入)则消去a1,(q^(n-1))^
S4=a1(1-q^4)/(1-q)=5a1(1-q^2)/(1-q)1+q^2=5q^2=4因为q
(1)由f(n)=log2(an),f(1)+f(3)+f(5)=6得:a1*a3*a5=2^6=64,即a3^3=64,a3=4又f(1)*f(3)*f(5)=0,a1>1,所以:a5=1,即q=1
q的倒数是大于1所以00所以3q=3-a1>0a1
S1=a1(1-q)/(1-q),S2=a1(1-q^2)/(1-q),...,Sn=a1(1-q^n)/(1-q).S1+S2+...+Sn=[a1/(1-q)]*[1-q+1-q^2+...+1-
a2=qa1,a3=q^2a1,且a1.a3.a2成等差数列,则2a3=a1+a22q^2a1=a1+qa1,即2q^2=1+q,解得:q=1或q=-1/2
已知等比数列{an}的公比q>1,a17^2=a24,求使a1+a2+a3+……+an>1/a1+1/a2+1/a3+……+1/an成立的n的取值范围.【解】a17^2=a24,a1^2q^32=a1
(1)a3*a4=a2*a5=1/2a2+a5=9/4-1
首先得求的a1a4=5s2...a1q^3=5(a1+a1q)又.a3=a1q^2=2...所以.2q=5(a1+a1q)得.a1=(2q)/(5(1+q))又因为.a3=a1q^2=2得.q=1.2
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3-1)=a1*q^2S4=5S2=>a1(1-q^4)/(1-q)=5*a1(1-q^2)/(1-q)
S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q
等比数列an的公比大于1,设公比为q,且q>1a1a3=6a2,a1*a2*q=6a2a1*q=6a2=6a1.a2.a3-8成等差,2a2=a1+a3-82*6=6/q+6*q-820q=6+6q^
q>1a1+a8>a4+a5q
作差a(n+1)-a(n)=a1q^n-a1q^(n-1)=a1q^(n-1)(q-1)>0若q0综上所述充分不必要条件附不必要的反例a1=-2q=1/2
设an=a1×q^(n-1)an+2=an+a(n+1)a1×q^(n+1)=a1×q^(n-1)+a1×q^nq^2=1+qq=(1±√5)/2再问:q^2=1+q这部是什么意思再答:a1×q^(n
a2=a1*qa3=a1*q*q因为是等差数列,所以有a1+a3=2*a2a1+a1*q*q=2a1*q约去a1,得q^2-2q+1=0所以,q=1再问:q还可以等于-1/2……再答:抱歉,错了。a1
S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q
a2+a3=a1q+a1q²=6a1=1所以q²+q-6=0(q-2)(q+3)=0q>1q=2所以an=2的(n-1)次方
第一个晕,才看懂.明显公比是1第二个a3*a5=4提示你等比数列中,a2*a4=a3的平方a4*a6=a5的平方所以a3+a5平方=25an大于0,所以a3+a5=5,所以a3=1a5=4公比是2,a