等比数列前n项和为sn,若S3,S9,S6成等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:00:57
(1)an=1+(n-1)dS2=a1+a2=2+dS3-S1=a2+a3=2+3dS5-S3=a4+a5=2+7d(2+3d)^2=(2+d)(2+7d)d=0or2d=2时bn=1/an*an+1
(Ⅰ)∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,∴2(a1+a1q+a1q2)=a1+a1+a1q,解得q=-12或q=0(舍).∴q=-12.(Ⅱ)∵a1-a3=3,q=-12
an=a1+(n-1)dS1=a1S2=S1q=a1+a2=2a1+d.1S4=S1q^2=a1+a2+a3+a4=4a1+6d.21式、2式两边都除以a1,得q=2+d/a1,q^2=4+6*(d/
等比数列{an}中,前n项和为sn,已知S1,S3,S2成等差数列,求{an}的公比Q.已知a1-a3=3,求sn?S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列
S5-S3=S4-S5S3+a4+a5-S3=S5-a5-S5a4+2a5=0a4+2a4q=0q=-1/2an=a1q^(n-1)=3/2×(-1/2)^(n-1)=-3×(-1/2)^n
由题得a1+a2=30即a1+a1q=30a1+a2+a3=155即a1+a1q+a1^2=155上2式上下比.可得q=5得a1=5在根据等比数列和的公式sn=a1(1-q^n)/(1-q)=5(5^
S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列即s3-s1=s2-s31+q+q^2-1=1+q-(1+q+q^2)q^2+q=-q^2q=0或-1/2如果a1-
sn=a1(1-q^n)/(1-q)S6:S3=(1-q^6)/(1-q^3)=(1+q^3)(1-q^3)/(1-q^3)=1+q^3=1:2所以q^3=-0.5S9:S3=(1-q^9)/(1-q
Sn=a1(1-q^n)/(1-q)=a1/(1-q)-a1/(1-q)*(q^n)设b=a1/(1-q),有Sn=b-b*q^n估计你已经会了S1+.+Sn=nb-b(q(1-q^n)/(1-q))
因为S6,S9,S3成等差数列所以S6+S3=2S9,所以2a1(1+q+q^2)+a1q3(1+q+q^2)=2a(1+q+q^2+.q^8)解得q^3=-12S3*(S12-S6)=2a1(1+q
我晕,不能插入图片?囧……我传到我qq相册,你去看.
因为S3.S9.S6成等差数列2S9=S3+S62a1(1-q^8)/(1-q)=a1(1-q^2)/(1-q)+a1(1-q^5)/(1-q)2(1-q^8)=2-q^2-q^52q^8=q^2+q
由已知,可得S3=A1(1-q^3)/(1-q);S9=A1(1-q^9)/(1-q);S6=A1(1-q^6)/(1-q);S3,S9,S6成等差数列,所以S3+S6=2S9,化简,得q^3+q^6
先说一个等比数列的性质:记S(n)为等比数列an的前n项和,P(n)为S(m*n)-S((m-1)*n),m=1,2,……;则P(n)也为等比数列;且公比为q^n证明:设等比数列为:a(n)=a1*q
(1)因为a2=1所以a1*q=1a1=1/q得:S3=a1+a1*q+a1*q^2=1/q+q+1>=3当且仅当q=1时,等号成立所以S3>=3(2)S3=a1+a1*q+a1*q^2=1/q+q+
首项为a1,比为qS6=S3+S3*q^3S9=S3+S3*q^3+S3*q^6S3,S9,S6成等差数列,那么S3+S9=2S6,即S3+S9-2S6=0S3+S3+S3*q^3+S3*q^6-2S
sn=na1+n(n-1)d/2=na1+n(n-1)s1=a1s2=2a1+2s3=3a1+6s4=4a1+12……算了半天,感觉题目是错的.再问:这是我们月考题。。。再算算???再答:题目有问题:
等比数列有性质,设m∈N+,m>0,则Sm,S2m-Sm,S3m-S2m,……也是等比数列利用此性质,则(S6-S3):S3=(1-2):2=-1/2,S3,S6-S3=(-1/2)S3,S9-S6构
由题意有:S3=a1(1+q+q^2)=3*a1*q^2即:1+q+q^2=3q^2所以:2q^2-q-1=0即(2q+1)(q-1)=0解得:q=-1/2或q=1