等腰直角三角形abc p点为动点bc角c等于九十度 求中点m的运动长度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 22:44:28
等腰直角三角形abc p点为动点bc角c等于九十度 求中点m的运动长度
已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如

1)设AB=AC=2a,当D为AC中点时,AD=a,AB=2a,BD=根5a,CD=a,三角形ABD相似于三角形ECD,建立比例式得:CE=2a/根5.BD:CE=2.5.2)若BD是角平分线时,这个

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC边中点,求证:△BMD为等腰直角三角形.

把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC中点,证△BMD为等腰直角三角形

证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得

已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图

0-1当然可以小于4/3注意到△BAD∽△CED当值恰好为4/3时设AD=x,AC=AB=a,那么CE=CDsin(∠CDE)=(a-x)sin(∠BDA)=(a-x)*a/BD而BD*BD=(a*a

如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形.小明

当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)就是符合条件的一个P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x

点P是等腰直角三角形ABC斜边BC的中点,以P为顶点的直角交AB,AC于EF,证明:PEF为等腰直角三角形

连接AP,因为△BAC为等腰直角三角形所以BP=AP,角PBE=角PAF=45度又因为角BPA=角EPF=90度所以角BPA-角EPA=角EPF-角EPA所以角BPE=角APF,加上BP=AP,角PB

已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,(1

如图,设AB=AC=2,则BC=2√2.(1)∵D是AC的中点, ∴AD=CD=1.在Rt△ABD中,由勾股定理得:BD=√5.又Rt△ABD∽Rt△ECD,所以有CE/CD=AB/BC,C

已知△ABC是等腰直角三角形,∠A = 90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如

1)设AB=AC=2a,当D为AC中点时,AD=a,AB=2a,BD=根5a,CD=a,三角形ABD相似于三角形ECD,建立比例式得:CE=2a/根5.BD:CE=2.5.2)若BD是角平分线时,这个

已知,ΔABC是等腰直角三角形,∠A=90,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图:

如图,设AB=AC=2,则BC=2√2.(1)∵D是AC的中点, ∴AD=CD=1.在Rt△ABD中,由勾股定理得:BD=√5.又∵Rt△ABD∽Rt△ECD,∴CE/CD=AB/BC,CE

已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.

如图,设AB=AC=2,则BC=2√2.(1)∵D是AC的中点, ∴AD=CD=1.在Rt△ABD中,由勾股定理得:BD=√5.又Rt△ABD∽Rt△ECD,所以有CE/CD=AB/BC,C

已知点B是半圆x2+y2=1(y>0)上的一个动点,点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,且顶

设C(x,y),令B(x0,y0),∵点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,∴kAB×kAC=-1,且AB=AC∴yx−2×y0x0−2=−1  &nbs

如图,正方形ABCD的边长为a,E是CD边上的一个动点,以CE为一条直角边在正方形ABCD外作等腰直角三角形CEF,连结

三角形BCD与三角形CFE都是腰直角三角形所以角BDC=角ECF=45度,所以BD平行CF△BDF的面积=△BDC+△DEF+△CEF-△BCF设EF=b则有△BDF的面积=1/2*a*a+1/2*(

如图,已知△ABC为等腰直角三角形,AC=BC=8,点D在BC上,CD=2,E为AB边上的动点,则△CDE周长的最小值是

作C点关于AB的对称点C′,连接DC′′,CE,再连接C′B,∵△ABC为等腰直角三角形,C点关于AB的对称点C′,∴BC=BC′,∠CBC′=90°,∵AC=BC=8,CD=2,∴BD=6,∴DC′

如图所示,把一个腰长为1cm的等腰直角三角形ABC绕点C旋转

在旋转过程中所经过的面积=三角形ABC的面积+扇形AEC的面积=1*1/2+3.14*1*1*90/360=1/2+3.14/4=1.285cm^2

如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那

如图,连接DE.设AC=x,则BC=2-x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=22x,CE=22(2-x),∴∠DCE=90°,故DE2=DC2+C

直线段AB的长为L,C为AB上的一个动点,分别以AC和BC为斜边,在AB的同侧作两个等腰直角三角形,记为△ACD和△BC

画个图就知道,角DCD'为直角,故斜边的两直角边的平方开根号,DD'=根号下sin45*AC的平方+sin45AB的平方=根号下1/2(AC^2+AB^2)=根号下1/2{(AB+AC)^2-2AB*