等边三角形ABC中有一点P,∠APB=∠APC=∠BPC=120°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:16:03
如图: ABCP的面积=S△ABC+S△APC=S△ABP+S△BCP∴AC*h*1/2+AC*PF*1/2=AB*PD*1/2+BC*PE*1/2 &nb
因为要使△PAB、△PBC,△PAC都是等腰三角形则P点到AB,AC,BC三条边的距离要相等,P点必在角A的平分线上,也必在角B的平分线上,也必在角C的平分线上,有一点P点在角A的平分线上,也必在角B
【郭程的账户:首先祝你新年快乐!】从哪里搞的这个题目,真的有点难度,想害死人啊,不过题目还是不错的,花点时间给你解答吧,相信你一定能看懂主要是看图设:△ABP面积=S1,△APC面积=S2,△BPC面
解证:将△APB按逆时针方向旋转60°,如图:AB与AC重合,连PP’ 则△APP'为等边三角形,(∵&nbs
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bccosA∵三角形三边关系:即两边之和大于第三边∴AB>3∴P点在△ABC为等
8倍根号3..h1+h2+h3的值是高,注意是等边三角形就可以知道边长是4倍根号3,面积就可求啦
第一题,设等边三角形的边长为a,连接辅助线,则大等边三角形被分成以a为底边,分别以3、4、5为高的三个三角形,根据各部分面积等于总面积,有1/2a*5+1/2a*4+1/2a*3=1/2a^2sin6
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
设边长为Lcm,那么可以算出三角形面积为四分之根号三L^2又因为三角形面积=三角形abp的面积+三角形acp的面积+三角形bcp的面积=3L/2+4L/2+5L/2=6L平方厘米所以四分之根号三L^2
等边三角形内任意点到三边的距离之和相等(自己去推)那么等边三角形中心到三边的距离是(3+4+5)/3=4cm再解直角三角形得边长为4根号3
在⊿ABC外部作∠ABD=∠CBP,使BD=BP,连接AD,PD.(点D和P在AB两侧)∵AB=BC(已知);BD=BP,∠ABD=∠CBP(所作).∴⊿ABD≌⊿CBP(SAS),∠BDA=∠BPC
3×二分之一bc除以2
∠APB=150°将ΔCPB绕着B点顺时针旋转60°,使点C与点A重合,得到ΔADB,连接PD则ΔCPD≌ΔADB∴AD=PC=5BD=PB=4∵∠PBD=60°∴ΔPDB是正三角形,∴PD=4∠DP
108连接点P与三角形三个顶点,将原三角形分为3个小三角形,底边均为原等边三角形的边长(设为a,a>0),高分别为3、4、5,则等边三角形的面积等于三个小三角形面积之和S=3a/2+4a/2+5a/2
如图 将△BAP绕B点旋转60°,使AB旋转至 CB,PB旋转至QB,PA旋转至QC(PA=QC=2)连接CQ PQ 则△BPQ也为等边
如图,以AP为边作等边△APD,连接BD.则∠BAD=60°-∠BAP=∠CAP,在△ADB和△APC中,AD=AP.∠BAD=∠CAP,AB=AC∴△ADB≌△APC(SAS)∴BD=PC=5,又P
本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB
http://czsx.cooco.net.cn/testdetail/32754/
∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵把△BPA绕点B顺时针旋转60°得到△BDC,连结DC,如图,∴BP=BD=8,∠PBD=60°,DP=AP=10,∴△PBE为等边三角形,∴
等边三角形边长为a,那么和P点到三点有什么关系,答案都已经出来了!根号3A