lim (x,y)→(0,1) xysin1 x^2 y^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:38:31
lim(x→0)sinxsin(1/x)=0[无穷小sinx乘以有界函数sin(1/x)]lim(x→∞)(arctanx/x)=0[理由同上,arctanx有界,1/x无穷小]
用罗必达法则,-2
应该分二种情况讨论,1、当X→0时Lim(x-y)/(x+y)=Lim(-y)/y=-12、当Y→0时Lim(x-y)/(x+y)=Limx/x=1
根据洛必达法则lim(n→0)ln(1+x)/x=lim(n→0)l/(x+1)=1
用2次罗比达法则lim(x→0)sinx-x(x+1)/xsinx=lim(x→0)(cosx-2x-1)/(sinx+xcosx)=lim(x→0)(-sinx-2)/(2cosx-xsinx)=(
lim1/x(tanπx/(2x+1))=lim(1/x)*tan[π/2-π/(4x+2)]=lim1/xtanπ/(4x+2)=lim(4x+2)/πx=4/π2.lim(xlnx)=0(x→0)
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
原式=0-1=-1lim(x→0)sinx/x=sinc(0)=0因为:在0附近,sinx=x-x^3/6+...=x+o(x)
你这个题目存在很多问题,(lim)x/x-y是X除以X在减去Y呢,还是除以(X-Y)这个整体啊,细节问题啊,值得注意.如果我猜的没错的话,答案应该是1再问:(LIM)X→0Y→0再答:还是1
考虑用ln来使极限变得简单原式=lime^[ln(e^x-x)^(1/sinx)]=lime^[ln(e^x-x)/sinx]【把sinx提到ln的外面】=lime^[(e^x-1)/(e^x-x)/
原式=lim(x,y)→(0,1)(1+xy)^[1/yx·y]=[lim(x,y)→(0,1)(1+xy)^1/yx]^[lim(x,y)->(0,1)y]=e^1=e
1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1
=1/(1-y/x)=1
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对
该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)
Y=lim(xy+1)/x^4+y^4=lim(xy+1)/lim(x^4+y^4)又(x,y)→(0,0),则有:lim(xy+1)=1,(x^4+y^4)∈(0,1)Y=lim(xy+1)/x^4