lim e^x*sinx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:42:37
lim e^x*sinx
证明不等式x-sinx

f(x)=2x-sinx-tanxf'(x)=2-cosx-sec²x=2-cosx-1/cos²x=(2cos²x-cos³x-1)/cos²x分母

sinx/x的不定积分

那肯定是你做错了哈哈哈∫sinx/xdx=∫-1/xdcosx=-cosx/x-∫cosx/x²dx做不到∫sinx/xdx=x*sinx/x-∫x*(xcosx-sinx)/x²

根号下(sinx-(sinx)^3 x)dx

根号下(sinx-(sinx)^3)dx=根号下(sinx[1-(sinx)^2])dx=根号下(sinx*cos^2x)dx=根号下(sinx)*cosxdx=根号下(sinx)*dsinx=2/3

x+sinx/x 导数

y'=1+(xcosx-sinx)/x^2

y=(sinx)^x(sinx>0) 求导

可以采取对数求导由y=(sinx)^x得lny=ln(sinx)^x=xln(sinx)两边求导得到1/y*y'=ln(sinx)+x*cosx*1/sinx所以得到y'=(sinx)^x*ln(si

求(x-sinx)/(x+sinx)的极限

依题它是趋向于0.又式子是0/0型,所以原式=(1-cosx)/(1+cosx)=(x²/2)/2=x/2=0再问:������再答:哪里看不懂再问:�ǵ�1-cosx���Dz�再答:x趋于

slacked lime怎么翻译?

熟石灰~不过那个是slacklime

lime^(1/x) x趋近于0的极限 是多少

ime^(1/x)x趋近于0+=无穷大ime^(1/x)x趋近于0-=0因此ime^(1/x)x趋近于0的极限不存在

求极限lime的1/x x趋于无穷

lim(e->∞)e^(1/x)=e^0=1

limx趋近0 {【sinx---sin(sinx)】sinx}/(x^4)

利用罗必塔法则limx趋近0{【sinx---sin(sinx)】sinx}/(x^4)=limx趋近0{(sinx)的平方---sin(sinx)乘以sinx}/(x^4)=limx趋近0{sinx

证明极限是否存在,详细步骤lim|x|/x(x趋近于0),lime^1/x(x趋近于0),limsinx(x趋近于无穷)

lim|x|/x不存在,当x→0-时,极限为-1;而x→0+,极限是1;lime^1/x不存在,当x→0-时,1/x→-∞,则lime^1/x→0;而当x→0+,1/x→+∞,lime^1/x→+∞;

求导y=x/sinx+sinx/x

y=x/sinx+sinx/xy'=(sinx-xcosx)/sin²x+(xcosx-sinx)/x²

lime^1/(x-1) 0+ 极限到底为多少

首先lime^1/(x-1)-1+1=1/(x-1)+1这一步错误因为e^x-1~x只有当x→0时成立这里x→0,1/(x-1)→-1,这个替换是不正确的然后1/(x-1)+1此时带入=2,这个是你算

lime^x-1 /2 x趋向于0,求极限

lim(e^x-1)/2x方法一:e^x-1与x为等价无穷小,所以,原式=limx/2x=1/2方法二:用洛必达法则,分子分母求导,原式=lim(e^x)/2=1/2再问:是e的X方,再减1,不是e的

lime^x-1 /2 x趋向于0,求极限,为什么最后能变成x/2x

=lime^x-1/2x=lim(e^0-1/2x)=lim(1-1/2x)=lim(2x/2x-1/2x)=lim(x/2x)=1/2

lime什么意思

n.酸橙;石灰;绿黄色;椴树vt.撒石灰于;涂粘鸟胶于

lim (e^sinx-e^x)/(sinx-x)

有两种方法,都稍微麻烦一些:1、利用罗比达法则,分子分母求导lim(e^sinx-e^x)/(sinx-x)=lim(cosxe^sinx-e^x)/(cox-1)第二次分子分母求导:=lim[(e^

证明x/sinx

令f(x)=x^2-tanxsinxf`(x)=2x-sinx-sinx(secx)^2f``(x)=2-(secx)^2-cosx-1/cosx由均值不等式cosx+1/cosx≥2可得在(0,π/

lim x-sinx/x+sinx

(x→0)lim(x-sinx)/(x+sinx).罗比达法则=(x→0)lim(1-cosx)/(1+cosx)=0/2=0

求极限lime^x-e^-x-2x/x-sinx x→0

lime^x-e^-x-2x/x-sinxx→0=lim(e^x+e^(-x)-2)/(1-cosx)连续多次用到洛必达法则=lim(e^x-e^(-x))/sinx=lim(e^x+e^(-x))/