lim x->無窮√x² 1 x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:05:59
上下乘√(x²+1)+x则分子是平方差分子是x[√(x²+1)-x][√(x²+1)+x]=x(x²+1-x²)=x所以原式=limx/[√(x
令t=1/x,则x→0时,t→∞原极限=lim(√1+t²)/t则t→+∞时,t=√t²,lim(√1+t²)/t=lim(√1+1/t²)=1t→-∞时,t=
limx→∞ln(x+5)/√(x^2+1)(这是∞/∞型,运用洛必达法则得)=limx→∞1/[(x+5)*2x/2√(x^2+1)]=limx→∞√(x^2+1)/[(x+5)*x]=0再问:啊~
由于上下在x趋向0时都趋向0所以可以利用洛比塔法则limx趋向0ln(1+x)/x=limx趋向0(ln'(x+1)/x')=limx趋向0(1/(1+x))=1
lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创
解析limx/x²sinx两个极限sinx/x=11/x趋于0所以极限趋于0再问:我的问题是:limx趋于0x份之1乘sinx=再答:我知道两个重要极限知道吧limx->0sinx/x=1x
limx[(√x^2+1)-x=limx[(√x^2+1)-x]*[(√x^2+1)+x]/[(√x^2+1)+x]x→+∞x→+∞=limx/[(√x^2+1)+x]x→+∞=limx*(1/x)/
是求x[ln(x+1)-ln(x)]的极限吧?lim(x->∞)x[ln(x+1)-ln(x)]=lim(x->∞)ln((x+1)/x)/(1/x)(0/0型罗比塔法则)=lim(x->∞)(x/(
在x趋于无穷的时候,1+x也趋于无穷大,所以常数1除以无穷大1+x趋于0即limx趋于无穷1/1+x=0而limx趋于无穷x/1+x=limx趋于无穷1/(1+1/x),显然趋于无穷时,1/x趋于0,
sin(1/x)是有界的故根号[1+sin(1/x)]也是有界的无穷小乘以有界等于无穷小故原式=0再问:лл����Ȼ�����Ѿ������
求极限x→1lim[√(3-x)-√(1-x)]/(x²+x-2)原式=∞求极限x→1lim[√(3-x)-√(1+x)]/(x²+x-2)【0/0型,用洛必达法则】原式=x→1l
上下乘√(x²+1)+x分子平方差=x²+1-x²=1所以原式=limx/[√(x²+1)+x]上下除以x=lim1/[√(1+1/x²)+1]=1/
原式中,当x趋近于0的时候,-1+√(x+1),趋近于0,x趋近于0分子分母都趋近于0构成0/0型极限用洛必达法则原式=limx趋于0[1/(2√(x+1)]=1/2
用等价无穷小代换有原式=lim3x/(4x)=3/4
分子有理化x^2+1-x^2/[√(x^2+1)+x]=1/[√(x^2+1)+x]当(x→+∞)极限为0
到底是什么?再答:
limx→∞(√x+1-√x)=limx→∞1/(√x+1+√x)=0
是0/0型的,用洛必塔法则:limln(1+sin2x)/xx->0+=lim1/(1+sin2x)*cos2x*2/1x->0+=1/(1+0)*1*2/1=1/2
需要:|(x-1)/(√x-1)-2|=|√x-1|=|x-1|/(√x+1)|