Lim x-x^x 1-xlnx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:29:39
§dx/[x(lnx-1)]=§dlnx/(lnx-1)=§dlnln(x-1)=lnln(x-1)
设x=e^t,dx=e^tdt,lnx=t不定积分(x+(lnx)^3)/(xlnx)^2dx=(e^t+t^3)/(te^t)^2e^tdt=不定积分(1/t^2)dt+不定积分te^(-t)dt=
由于上下在x趋向0时都趋向0所以可以利用洛比塔法则limx趋向0ln(1+x)/x=limx趋向0(ln'(x+1)/x')=limx趋向0(1/(1+x))=1
就是求1/(x+lnx)d(lnx+x)求积分,后面应该会了吧.也就是求1/t的积分
(1)当a=0时,f(x)=x-xlnx,函数定义域为(0,+∞).f'(x)=-lnx,由-lnx=0,得x=1.-------------(3分)x∈(0,1)时,f'(x)>0,f(x)在(0,
lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创
y=exp{2/x*ln(x-2)}+xlnxy'=(x-2)^2/x*{-2*ln(x-2)/x^2+2/[x*(x-2)]}+lnx+1
a>(ln4)/3-ln((ln2)/3)-1
原式=∫(x+1)/x²+∫xlnxdx=∫x/x²+∫1/x²+1/2∫lnxdx²=∫1/x+∫1/x²+1/2*x²lnx-1/2∫x
∫(x+1)/(x²+xlnx)dx=∫(x+1)/[x(x+lnx)]dx,d(x+lnx)=(1+1/x)dx=∫[(x+1)/[x(x+lnx)]*1/(1+1/x)]d(x+lnx)
∫xlnx/(1+x^2)^2dx=1/2*∫lnx/(1+x^2)^2d(1+x^2)=-1/2*∫lnxd[1/(1+x^2)]=-1/2*lnx*1/(1+x^2)+1/2*∫[1/(1+x^2
证:假设limx→x0[f(x)+g(x)]=B存在.则limx→x0g(x)=limx→x0[f(x)+g(x)−f(x)]=limx→x0[f(x)+g(x)]−limx→x0f(x)=B−A所以
1-(lnx+1)再答:1-(lnx+1)再问:为什么呢,麻烦给一下详细的步骤再答:先算x的导数为1,然后算xlnx的导数,为(x)′lnx+x(lnx)′,然后就得到答案了
已知函数f(x)=xlnx1、若函数G(x)=f(x)+x^2+ax+2有零点,求实数a的最大值2、若任取x大于0,f(x)/x小于等于x-kx^2-1恒成立,求实数k的取值范围(1)解析:∵函数f(
f`(x)=lnx+1
是合肥市的一模题吧,难度较大,正确答案是4和5,关键是5,很容易判断4是正确的.至于5比较复杂,思路大致如下:x1f(x1)+x2f(x2)-x1f(x2)-x2f(x1)=x1*[f(x1)-f(x
/>(1)对函数f(x)=xlnx求导得:f'(x)=lnx+1令lnx+1=0,x=1/e当x>1/e时,f'(x)>0当01时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1所
应该是x→0+e^x,lnx都是连续函数.见复合函数的极限与连续性.
分部积分啦!∫xlnx/[(1+x^2)^2]dx=(-1/2)∫lnxd(1/(1+x^2))=(-1/2)lnx/(1+x^2)+(1/2)∫1/[(1+x^2)*x]dx=(-1/2)lnx/(