lim y=0与limx=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:05:36
lim y=0与limx=0
limx→0 f(x)/x存在 则limx→0 f(x)=0为什么

分母x的极限当然是0,1/x的极限是∞(1)若f(x)的极限不存在那么f(x)/x的极限一定不存在(2)若f(x)的极限存在为A,A≠0那么f(x)/x是A/0型,极限不存在∴f(x)的极限一定存在,

limx趋于0x/f(3x)=2,求limx趋于0f(2x)/x

因为limx趋于0x/f(3x)的极限是2存在所以在分子x趋于0时,有分母f(0)趋于0所以运用导数定义:limx趋于03[f(0+3x)-f(0)]/3x=limx趋于0f(3x)/x=1/2即3f

已知{limx趋近0 [(sin6x)+xf(x)]/x^3}=0 求limx趋近0 [6+f(x)]/x^2=?答案是

f有二阶导数吧?条件要写全了,否则很难做题的.Taylor展式最简单,sin6x=6x-(6x)^3/6+小o(x^3),xf(x)=x(f(0)+f'(0)x+f''(0)/2x^2+小o(x^2)

高等数学数列的极限limX=a,证明limX=a的绝对值设数列{Xn}有界,又limYn=0,证明limXnYn=0

limX=aa的绝对值数列{Xn}有界,所以limYn=0,limYn=0则limXnYn=0

极限limx→0 x/ln(1+x^2)=()

limx/ln(1+x²)[分子分母都趋向于0]x→0=lim1/[2x/1+x²][运用罗毕达法则,分子分母分别各自求导了一次]x→0=lim(1+x²)/2x[分子趋

设f(0)=0 且f'(0)存在 则limx趋向与0f(x)/x=

当limx趋于0时,limf(x)/x=f'(0)

limx→0 (x+sin2x)/(x-sin2x)=几?

上下除以2x=lim(1/2+sin2x/2x)/(1/2-sin2x/2x)=(1/2+1)/(1/2-1)=-3

limx趋于0 1/x sinx=

解析limx/x²sinx两个极限sinx/x=11/x趋于0所以极限趋于0再问:我的问题是:limx趋于0x份之1乘sinx=再答:我知道两个重要极限知道吧limx->0sinx/x=1x

limx趋近于0时,sin3x/sin5x=?

limx趋近于0时,sin3x/sin5x=3x/5x=3/5(等价无穷小代换)再问:为什么是这样啊?再答:x趋于0时,sin3x和3x是等价无穷小,sin5x和5x是等价无穷小

limx趋向无穷大 sin3x/x=?等于0?

没错,当x趋向于无穷时,sin3x是有界量,而1/x趋于0,0乘以有界量就等于0顺便给你个函数玩玩:f(x)=(x^2)sin(1/x),当x趋于0时会怎么样,导数是否存在,是否连续.

limx→0 (tanx-sinx)/sin^3x =limx→0 (tanx-sinx)/x³ 为什么可以直

tanx可以写为sinx/cosx所以可以去掉sinx

limx->0[tanx-sinx]/sinx^3=?

limx->0[tanx-sinx]/sinx^3===>limx->0[tanx-sinx]/x^3===>limx->0[tanx(1-cosx)]/x^3===>limx->0[(tanx/x)

(管理、文科)极限limx→0xsin1x=(  )

由三角函数的定义可知:|sin1x|<1,由函数极限的性质可知:limx→0x=0故有:limx→0xsin1x=0故选择:B.

limx→0xsin(1/x)=0 limx→ ∞xsin(1/x)=1 limx→ ∞(1/x)sinx=1 为什么?

这三个都是不定式的积分,第一个:limx→0xsin(1/x)=0x是无穷小量;sin(1/x)相当于sin∞,但属于有界变量(±1之间)无穷小量乘以有界变量还是无穷小量,所以极限是0第二个:limx

设数列{X}有界,又有limY=0,证明:limXY=0

因为数列{X}有界,所以设绝对值X

若limx→0 f(2x)/x=2,则limx→无穷x*f(1/2x)等于?

应该是f'(x)=lim(x→0)[f(2x)/(2x)]=(1/2)lim(x→0)[f(2x)/x]=(1/2)*2=1.f'(x)=lim(x→无穷)[f(1/2x)/(1/2x)=2lim(x

若limx→0f(x)/x^2=2,则limx→f(x)/x=?

lim(x→0)f(x)/x^2=2则lim(x→0)f(x)/x=lim(x→0)f(x)/x^2*x=lim(x→0)f(x)/x^2*lim(x→0)x=0*2=0