lim(sinx-tanx) (1 x^3-1)(1 sinx-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:44:25
(tanx-sinx)/sin³x=(sinx/cosx-sinx)/sin³x=(1/cosx-1)/sin²x=[(1-cosx)/cosx]/(1-cos²
tanx-sinx/x^3=[sinx(1-cosx)]/(x^3*cosx)=(sinx/x)*(1-cosx)/x^2(当x趋于0时,cosx的极限是1)=1*1/2(1-cosx与1/2*x^2
lim(tanx-sinx)/x^3=limsinx(1/cosx-1)/x^3=lim[sinx(1-cosx)]/[cosx·x³]=lim[x(1/2)x²]/[cosx·x
解利用L'Hospital法则,可得lim(x→0)(tanx-x)/(x-sinx)=lim(x→0)[(secx)^2-1]/(1-cosx)=lim(x→0)(1+cosx)/(cosx)^2=
先看第一步tanx-sinx就是公式变形,sinx=tanx*cosx,然后代进去,tanx-tanx*cosxtanx(1-cosx),然后tanx等价于x,1-cosx等价于2x^2,sin^3x
lim(x→0)[(tanx-sinx)/(sin^22x)]=lim(x→0)[tanx(1-cosx)/(2x)^2]=lim(x→0)[x*x^2/2]/(2x)^2=0
=lim(1/cosx-1)/(sinx)^2=lim(1-cosx)/(sinx)^2cosx=lim2(sin(x/2))^2/(sinx)^2=(1/2)lim[(sin(x/2))^2/(x/
用罗比达法则或者是级数展开都可以得到这个极限的值是0如果你只是学了极限,那么你就把tanx变为sinx/cosx,然后提取sinx,可以知道sinx/x在趋近于0时为1,那么就剩下1/cosx-1等于
lim(x→0)(x+sinx)/tanx=lim(x→0)x/tanx+lim(x→0)sinx/tanx=1+1=2
lim(sinx)^tanx=lime^[tanx*lnsinx]=e^{lim[lnsinx/cotx]}利用洛必达法则=e^{lim[(cosx/sinx)/(-1/(sinx)^2)]}=e^{
x->0时,lim(tanx-x)/(x-sinx)=lim[(1/cos²x)-1]/(1-cosx)=lim(1-cos²x)/[cos²x(1-cosx)]=lim
x->0时,sinx/x——>1,tanx/x=sinx/(x*cosx)=1故所求为2
先等价无穷小代换:lim(x→0)(tanx-sinx)/xsinx^2=lim(x→0)(tanx-sinx)/x^3原式=lim(sin/cosx-sinx)/x³=limsinx(1-
lim(x→0)(sinx-tanx)/(sinx)^3=-1/2
解法一:∵lim(x->π/2)[(sinx-1)tanx]=lim(x->π/2){[(sinx-1)/cosx]sinx}=lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/
先用洛毕塔法则原式=lim(sec²x-cosx)/(1-cosx)=lim(1-cos³x)/((1-cosx)cos²x)=lim(1-cos³x)/(1-
lim->0(tanx-x)\(x-sinx)=lim(sec²x-1)/(1-cosx)=lim(1-cos²x)/(1-cosx)lim1/cos²x=lim(1-c
原式=lim{x->0}{tan(sinx)-tan(tanx)[1+cos(tanx)-1]}/(tanx-sinx)=lim{x->0}{tan(sinx-tanx)[1+tan(sinx)tan
-2再问:我需要过程。。再答:lim(e^tanx-e^3x)/sinx为0/0型,用洛必达法则。分子分母分别求导=lim(csc^2*e^tanx-3e^3x)/cosx=(1-3)/1=-2