lim(x,y)→(0,2)㏑(1-x) ((√(1-xy))-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:56:26
lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0
先化简原式=lim(x+y-2)(x-y)/(x+y-2)=lim(x-y)故1.极限=22.极限=-2
经济数学团队帮你解答,有不清楚请追问.请及时评价.
应该分二种情况讨论,1、当X→0时Lim(x-y)/(x+y)=Lim(-y)/y=-12、当Y→0时Lim(x-y)/(x+y)=Limx/x=1
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x
题目有问题.无解应该有个条件,沿xxx曲线趋近与(0,0)再问:二元函数求极限:limsin(x^2*y)/(x^2+y^2)x→0,y→0不好意思,麻烦了有个符号错了再答:还是无解,除非第一个括号是
=lim(x²y)/(x²+y²)【等价无穷小代换:当u→0时,sinu】=limy/(1+(y/x)²)令y=kx,则y/x=k.原极限=limy/(1+k&
这个式子在(1,2)连续所以极限=(1+4)/2=5/2再问:可以写写计算的过程吗。再答:就是这个啊因为连续,所以可以直接代入
若x+无穷=y+无穷[(x^2)/(2x^2)]^(x^2)=(1/2)^(x^2)=0
求极限lim(x,y)→(+∞,+∞)[(xy)/(x²+y²)]^(xy)[(xy)/(x+y)²]^(xy)≦[(xy)/(x²+y²)]^(xy
1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1
=1/(1-y/x)=1
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对
该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)
令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[
lim[x→0y→0][x^2+y^2+5/(x+y)sin(x+y)]=lim[x→0y→0][x^2+y^2]+5lim[x→0y→0]sin(x+y)/(x+y)]=5