lim(x→0,y→0)x y.x-y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:57:05
lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
lim(x,y)→(0,0)[1-cos(xy)]/xy^2=lim(x,y)→(0,0)(x²y²/2)/xy^2..=lim(x,y)→(0,0)x=0再问:[1-cos(xy
沿y=x从x>0的方向趋于原点时,表达式极限为0;沿y=-x+x^2从x>0的方向趋于原点时,表达式极限为-1.因此没有极限.
(x,y)->(0,0)=>u=xy->0lim(x,y)->(0,0)xy/[√(xy+1)-1]=limu->0u/[√(u+1)-1]=limu->0u*[√(u+1)+1]/u=limu->0
因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)
limx→0y→02xy/根号下1+xy然后-1=limx→0y→02xy[√(1+xy)+1]/[√(1+xy)-1][√(1+xy)+1]=limx→0y→02xy[√(1+xy)+1]/xy=l
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
这是一个重要极限(1+x)开n次根号—1趋向于x/n所以呢lim分子xy/3分母xy结果1/3
感觉从左式不能推导出右式,猜测:是不是错误地使用了什么方法,比如洛必达法则?再问:右式是左式推出来的,就是看不懂啊
利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x
=lim(x,y)-(0,0)[(xy+9)-9]/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)(xy)/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)1/[
lim[2-√(xy+4)]/xy=lim[2-√(xy+4)][2+√(xy+4)]/{xy[2+√(xy+4)]}=lim(x-->0,y---->0)(-xy)/[xy[2+√(xy+4)]]=
x^2+(y^2)/2=1,x^2+[(1/√2)y]^2=1,设x=cosA,y=√2sinA,因x>0,y>0,不妨设0<A<π/2,x√(1+y^2)=cosA√[1+2(sinA)^2]=√{
原式=lim(x,y)→(0,1)(1+xy)^[1/yx·y]=[lim(x,y)→(0,1)(1+xy)^1/yx]^[lim(x,y)->(0,1)y]=e^1=e
若x+无穷=y+无穷[(x^2)/(2x^2)]^(x^2)=(1/2)^(x^2)=0
求极限lim(x,y)→(+∞,+∞)[(xy)/(x²+y²)]^(xy)[(xy)/(x+y)²]^(xy)≦[(xy)/(x²+y²)]^(xy
因为xn有界,所以│xn│≤M.其中M是一正数.又因为limyn=0(n趋向无穷大)所以对任意正数ε,存在正数N,当x>N时,│yn│
可以.在这题里(x,y)->(0,0)的极限存在当且仅当xy->0的极限存在,可以带入.或者你可以理解成一个复合函数的极限:f(t)=[2-根号(t+4)]/t,t=xy,后者是一个连续函数再问:t=
Y=lim(xy+1)/x^4+y^4=lim(xy+1)/lim(x^4+y^4)又(x,y)→(0,0),则有:lim(xy+1)=1,(x^4+y^4)∈(0,1)Y=lim(xy+1)/x^4